scispace - formally typeset
Search or ask a question
Author

David S. Powlson

Bio: David S. Powlson is an academic researcher from Rothamsted Research. The author has contributed to research in topics: Soil organic matter & Soil carbon. The author has an hindex of 55, co-authored 250 publications receiving 24114 citations. Previous affiliations of David S. Powlson include University of Plymouth & University of Aberdeen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new method for the determination of biomass in soil is described, which is calculated from the difference between the amounts of CO2 evolved during incubation by fumigated and unfumigated soil.
Abstract: A new method for the determination of biomass in soil is described. Soil is fumigated with CHCl3 vapour, the CHCl3 removed and the soil then incubated. The biomass is calculated from the difference between the amounts of CO2 evolved during incubation by fumigated and unfumigated soil. The method was tested on a set of nine soils from long-term field experiments. The amounts of biomass C ha−1 in the top 23 cm of soil from plots on the Broadbalk continuous wheat experiment were 530 kg (unmanured plot), 590 (plot receiving inorganic fertilizers) and 1160 (plot receiving farmyard manure). Soils that had been fallowed for 1 year contained less biomass than soils carrying a crop. A calcareous woodland soil contained 1960 kg biomass C ha−1, and an unmanured soil under permanent grass 2020. The arable soils contained about 2% of their organic C in the biomass; uncultivated soils a little more—about 3%.

2,537 citations

Journal ArticleDOI
TL;DR: In this article, a method for measuring the amount of P held in soil micro-organisms (biomass P) is described and the assumptions on which it is based are discussed.
Abstract: A method for measuring the amount of P held in soil micro-organisms (biomass P) is described and the assumptions on which it is based are discussed. Biomass P is calculated from the difference between the amount of inorganic P (Pi) extracted by 0.5 (Spm) NaHCO3 (pH 8.5) from fresh soil fumigated with CHCl3 and the amount extracted from unfumigated soil. Some CHCl3-released Pi is sorbed by soil during fumigation and extraction: an approximate allowance for this is made by incorporating a known quantity of Pi during extraction and correcting for recovery. Most of the P released is in inorganic form and the proportion increases with duration of fumigation. Non-microbial P is little, if at all, affected by fumigation. Microbial biomass P is calculated from CHCl3-released Pi by dividing by 0.4, i.e. by assuming that 40% of the P in the biomass is rendered extractable as Pi by CHCl3. Measurements of biomass P must be done in fresh soil, CHCl3 releases much less P in air-dry soil.

1,297 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of straw and stubble of spring barley (Hordeum vulgare; 5t dry matter ha−1) being incorporated into soil annually for 18 years in two field experiments in Denmark.
Abstract: The straw and stubble of spring barley (Hordeum vulgare; 5t dry matter ha−1) were either burned or incorporated into soil annually for 18 yr in two field experiments in Denmark. Both experiments were on light soils situated at Studsgaard (loamy sand) and Ronhave (sandy loam). At both sites 18 yr of annual straw incorporation increased total soil organic C by only 5% and total N by about 10% but produced large increases in microbial biomass measured by the CHCl3-fumigation method. The increases in biomass C were 45 and 37% at Studsgaard and Ronhave, respectively: the corresponding increases in biomass N were 50 and 46%. Biomass measurements thus gave an early indication of slow changes in organic matter content long before these could be measured accurately against the background of organic matter already present in the soils. Increases in biomass P due to straw incorporation appeared to be even greater. However, the amounts of P released by CHC13 were small so the measurements of biomass P were less accurate than those of biomass C or N. During a 60-day laboratory incubation at 25°C, evolution of CO2-C was 55–79% greater in soil from straw incorporated plots than in soil from burned plots. Mineralization of N was 40–50% greater where straw had been incorporated, indicating thaf the long-term incorporation of straw had increased the quantity of mineralizable N in soil.

1,094 citations

Journal ArticleDOI
01 Dec 1997-Geoderma
TL;DR: In this article, nine soil organic models were evaluated using twelve datasets from seven long-term experiments and the performance of the models was compared both qualitatively and quantitatively, and possible reasons for differences in model performance were discussed in detail.

1,064 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that the climate change benefit of increased organic carbon from enhanced crop growth (for example from the use of fertilizers) must be balanced against greenhouse gas emissions associated with manufacture and use of fertilizer, and that an overemphasis on the benefits of soil carbon sequestration may detract from other measures that are at least as effective in combating climate change, including slowing deforestation and increasing efficiency of N use in order to decrease N2O emissions.
Abstract: The term ‘carbon sequestration’ is commonly used to describe any increase in soil organic carbon (SOC) content caused by a change in land management, with the implication that increased soil carbon (C) storage mitigates climate change. However, this is only true if the management practice causes an additional net transfer of C from the atmosphere to land. Limitations of C sequestration for climate change mitigation include the following constraints: (i) the quantity of C stored in soil is finite, (ii) the process is reversible and (iii) even if SOC is increased there may be changes in the fluxes of other greenhouse gases, especially nitrous oxide (N2O) and methane. Removing land from annual cropping and converting to forest, grassland or perennial crops will remove C from atmospheric CO2 and genuinely contribute to climate change mitigation. However, indirect effects such as conversion of land elsewhere under native vegetation to agriculture could negate the benefit through increased CO2 emission. Re-vegetating degraded land, of limited value for food production, avoids this problem. Adding organic materials such as crop residues or animal manure to soil, whilst increasing SOC, generally does not constitute an additional transfer of C from the atmosphere to land, depending on the alternative fate of the residue. Increases in SOC from reduced tillage now appear to be much smaller than previously claimed, at least in temperate regions, and in some situations increased N2O emission may negate any increase in stored C. The climate change benefit of increased SOC from enhanced crop growth (for example from the use of fertilizers) must be balanced against greenhouse gas emissions associated with manufacture and use of fertilizer. An over-emphasis on the benefits of soil C sequestration may detract from other measures that are at least as effective in combating climate change, including slowing deforestation and increasing efficiency of N use in order to decrease N2O emissions.

616 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of fumigation on organic C extractable by 0.5 m K2SO4 were examined in a contrasting range of soils and it was shown that both ATP and organic C rendered decomposable by CHCl3 came from the soil microbial biomass.
Abstract: The effects of fumigation on organic C extractable by 0.5 M K2SO4 were examined in a contrasting range of soils. EC (the difference between organic C extracted by 0.5 M K2SO4 from fumigated and non-fumigated soil) was about 70% of FC (the flush of CO2-C caused by fumigation during a 10 day incubation), meaned for ten soils. There was a close relationship between microbial biomass C, measured by fumigation-incubation (from the relationship Biomass C = FC/0.45) and EC given by the equation: Biomass C = (2.64 ± 0.060) EC that accounted for 99.2% of the variance in the data. This relationship held over a wide range of soil pH (3.9–8.0). ATP and microbial biomass N concentrations were measured in four of the soils. The (ATP)(EC) ratios were very similar in the four soils, suggesting that both ATP and the organic C rendered decomposable by CHCl3 came from the soil microbial biomass. The C:N ratio of the biomass in a strongly acid (pH 4.2) soil was greater (9.4) than in the three less-acid soils (mean C:N ratio 5.1). We propose that the organic C rendered extractable to 0.5 m K2SO4 after a 24 h CHCl3-fumigation (EC) comes from the cells of the microbial biomass and can be used to estimate soil microbial biomass C in both neutral and acid soils.

9,975 citations

Journal ArticleDOI
Rattan Lal1
11 Jun 2004-Science
TL;DR: In this article, the carbon sink capacity of the world’s agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon.
Abstract: :The carbon sink capacity of the world’s agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossilfuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.

5,835 citations

Journal ArticleDOI
09 Mar 2006-Nature
TL;DR: This work has suggested that several environmental constraints obscure the intrinsic temperature sensitivity of substrate decomposition, causing lower observed ‘apparent’ temperature sensitivity, and these constraints may, themselves, be sensitive to climate.
Abstract: Significantly more carbon is stored in the world's soils--including peatlands, wetlands and permafrost--than is present in the atmosphere. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. If carbon stored belowground is transferred to the atmosphere by a warming-induced acceleration of its decomposition, a positive feedback to climate change would occur. Conversely, if increases of plant-derived carbon inputs to soils exceed increases in decomposition, the feedback would be negative. Despite much research, a consensus has not yet emerged on the temperature sensitivity of soil carbon decomposition. Unravelling the feedback effect is particularly difficult, because the diverse soil organic compounds exhibit a wide range of kinetic properties, which determine the intrinsic temperature sensitivity of their decomposition. Moreover, several environmental constraints obscure the intrinsic temperature sensitivity of substrate decomposition, causing lower observed 'apparent' temperature sensitivity, and these constraints may, themselves, be sensitive to climate.

5,367 citations

Journal ArticleDOI
TL;DR: In this paper, a direct extraction method for measuring soil microbial biomass nitrogen (biomass N) is described, which is based on CHC13 fumigation, followed by immediate extraction with 0.5 M K2SO4 and measurement of total N released by CHC 13 in the soil extracts.
Abstract: A new “direct extraction” method for measuring soil microbial biomass nitrogen (biomass N) is described. The new method (fumigation-extraction) is based on CHC13 fumigation, followed by immediate extraction with 0.5 M K2SO4 and measurement of total N released by CHC13 in the soil extracts. The amounts of NH4-N and total N extracted by K2SO4 immediately after fumigation increased with fumigation time up to 5 days. Total N released by CHC13 after 1 day fumigation (1 day CHC13-N) and after 5 days fumigation (5 day CHC13-N) were positively correlated with the flush of mineral N (FN) in 37 soils that had been fumigated, the fumigant removed and the soils incubated for 10 days (fumigation-incubation). The regression equations were 1 day CHC13-N = (0.79 ± 0.022) FN and 5 day CHC13-N = (1.01 ± 0.027) FN, both regressions accounting for 92% of the variance in the data. In field soils previously treated with 15N-labelled fertilizer, the amounts of labelled N, measured after fumigation-extraction, were very similar to the amounts of labelled N mineralized during fumigation-incubation; both were about 4 times as heavily labelled as the soil N as a whole. These results suggest that fumigation-extraction and fumigation-incubation both measure the same fraction of the soil organic N (probably the cytoplasmic component of the soil microbial biomass) and that measurement of the total N released by CHC13 fumigation for 24 h provides a rapid method for measuring biomass N.

4,631 citations

Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: In this article, a new generation of experiments and soil carbon models were proposed to predict the SOM response to global warming, and they showed that molecular structure alone alone does not control SOM stability.
Abstract: Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

4,219 citations