scispace - formally typeset
Search or ask a question
Author

David Sánchez-Gómez

Bio: David Sánchez-Gómez is an academic researcher from Center for International Forestry Research. The author has contributed to research in topics: Stomatal conductance & Beech. The author has an hindex of 25, co-authored 43 publications receiving 2662 citations. Previous affiliations of David Sánchez-Gómez include Technical University of Madrid & University of Alcalá.

Papers
More filters
Journal ArticleDOI
TL;DR: An alternative approach to quantify PP based on phenotypic distances among individuals of a given species exposed to different environments is summarized in a relative distance plasticity index (RDPI) that allows for statistical comparisons of PP between species (or populations within species).
Abstract: Summary 1 Global change and emerging concepts in ecology and evolution are leading to a growing interest in phenotypic plasticity (PP), the environmentally contingent trait expression observed in a given genotype. The need to quantify PP in a simple manner in comparative ecological studies has resulted in the prevalence of various indices instead of the classic approaches, i.e. a comparison of slopes in the norms of reactions (trait vs. environment plots). 2 The objectives of this study were: (i) to review the most common methods for quantitative estimation of PP; (ii) to apply them to a specific case study of growth and shoot‐root allocation responses to irradiance in seedlings of four woody species grown at 1%, 6%, 20% and 100% full sunlight; and (iii) to propose new methods of estimating PP. 3 The 17 different plasticity indices analysed rendered disparate results, with cross-overs in species PP rankings. Statistical comparisons of PP among species were not possible with most of the indices due to the lack of confidence intervals. The non-linear responses of the traits made the use of the slope of the reaction norm to quantify PP unrealistic, and raised awareness on values derived from studies that consider just two environments. 4 We propose an alternative approach to quantify PP based on phenotypic distances among individuals of a given species exposed to different environments, which is summarized in a relative distance plasticity index (RDPI) that allows for statistical comparisons of PP between species (or populations within species). RDPI was significantly correlated with 12 out of the 17 PP indices analysed. An index including the environmental range leading to the different phenotypes (environmentally standardized plasticity index, ESPI), and thus expressing plasticity per unit of environmental change, is also proposed. 5 The new indexes can statistically segregate and unambiguously rank species according to their PP, which can foster a better understanding of plant ecology and evolution, particularly when common protocols are used by different investigators.

750 citations

Journal ArticleDOI
TL;DR: Evidence is found of some of the trade-offs previously reported for non-Mediterranean plant communities, such as between survival in the shade and relative growth rate (RGR) at high light, but no evidence for others.
Abstract: Summary • The aim of the study was to assess the potential importance for Mediterranean plants of trade-offs in the response to irradiance and water availability at the regeneration stage. • Survival and growth patterns across an experimentally imposed irradiance gradient (1, 6, 20 and 100% sunlight) were studied in seedlings of eight Mediterranean woody species, together with the impact of a simulated summer drought. •W e found evidence of some of the trade-offs previously reported for nonMediterranean plant communities, such as between survival in the shade and relative growth rate (RGR) at high light, but no evidence for others, such as between shade and drought tolerances. The impact of drought on survival and RGR was stronger in high light than in deep shade. • The observed species-specific differences in performance provide a mechanistic basis for niche differentiation at the regeneration stage, contributing to possible explanations of species coexistence in Mediterranean ecosystems.

192 citations

Journal ArticleDOI
TL;DR: Interacting effects of high light and drought on the performance of sun and shade phenotypes were experimentally undertaken following survival, chlorophyll fluorescence and gas exchange in 2-year-old saplings of four Mediterranean trees, allowing extended survival and drought tolerance.
Abstract: Interacting effects of high light and drought on the performance of sun and shade phenotypes were experimentally undertaken following survival, chlorophyll fluorescence and gas exchange in 2-year-old saplings of four Mediterranean trees (Quercus ilex and Q. coccifera as water-saving species, and Pistacia lentiscus and P. terebinthus as water-spending species). Half of the saplings were grown in full sunlight and the other half in the shade (6% sunlight). Half of each combination of species-phenotype was exposed to high light during a simulated late-summer drought. Light absorptance and gas exchange were scaled up to the whole plant with the 3-D geometrical model, Y-Plant. Quercus species were more plastic and tolerated high light and water stress better than Pistacia species, surviving longer and in drier soils, and exhibiting a less pronounced photoinhibition. There was no evidence of disadvantage for shade phenotypes under high light with increasing drought. By contrast, shade phenotypes survived longer despite larger initial decreases in photochemical efficiency and higher sensitivity to drought than sun phenotypes. The enhanced control of transpiration during drought in water-saving versus water-spending species (and also in shade versus sun phenotypes in three out of the four species) allowed extended survival. Photoinhibition reduced whole crown carbon gain in high light by c. 3% and affected significantly more the shaded leaves of a given plant (reducing their carbon gain by up to 7%) than those exposed to direct sunlight. Despite this apparently minor impact, whole plant carbon gain reduction by photoinhibition negatively correlated with survival and drought tolerance. The implications for succession and forest regeneration in arid environments, particularly under a global change scenario, are discussed.

178 citations

Journal ArticleDOI
TL;DR: The study supports the adaptive value of SLA and LS for cork oak under a Mediterranean climate and their potentially important role for dealing with varying temperature and rainfall regimes through both local adaptation and phenotypic plasticity.
Abstract: Plants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity. In this study, we examine the importance of both processes in coping with environmental heterogeneity in the Mediterranean sclerophyllous cork oak Quercus suber. For this purpose, we measured growth and key functional traits at the leaf level in 9-year-old plants across 2 years of contrasting precipitation (2005 and 2006) in a common garden. Plants were grown from acorns originated from 13 populations spanning a wide range of climates along the distribution range of the species. The traits measured were: leaf size (LS), specific leaf area (SLA), carbon isotope discrimination (Delta(13)C) and leaf nitrogen content per unit mass (N(mass)). Inter-population differences in LS, SLA and Delta(13)C were found. These differences were associated with rainfall and temperature at the sites of origin, suggesting local adaptation in response to diverging climates. Additionally, SLA and LS exhibited positive responses to the increase in annual rainfall. Year effect explained 28% of the total phenotypic variance in LS and 2.7% in SLA. There was a significant genotype x environment interaction for shoot growth and a phenotypic correlation between the difference in shoot growth among years and the annual mean temperature at origin. This suggests that populations originating from warm sites can benefit more from wet conditions than populations from cool sites. Finally, we investigated the relationships between functional traits and aboveground growth by several regression models. Our results showed that plants with lower SLA presented larger aboveground growth in a dry year and plants with larger leaf sizes displayed larger growth rates in both years. Overall, the study supports the adaptive value of SLA and LS for cork oak under a Mediterranean climate and their potentially important role for dealing with varying temperature and rainfall regimes through both local adaptation and phenotypic plasticity.

166 citations

Journal ArticleDOI
TL;DR: Findings point to a hydraulic explanation for the diversification of low-order vein architecture and the commonness of reticulate, hierarchical leaf venation and suggest roles for both economic constraints and risk tolerance in shaping leaf morphology during 130 million years of flowering plant evolution.
Abstract: Leaf venation is a showcase of plant diversity, ranging from the grid-like network in grasses, to a wide variety of dendritic systems in other angiosperms. A principal function of the venation is to deliver water; however, a hydraulic significance has never been demonstrated for contrasting major venation architectures, including the most basic dichotomy, "pinnate" and "palmate" systems. We hypothesized that vascular redundancy confers tolerance of vein breakage such as would occur during mechanical or insect damage. We subjected leaves of woody angiosperms of contrasting venation architecture to severing treatments in vivo, and, after wounds healed, made detailed measurements of physiological performance relative to control leaves. When the midrib was severed near the leaf base, the pinnately veined leaves declined strongly in leaf hydraulic conductance, stomatal conductance, and photosynthetic rate, whereas palmately veined leaves were minimally affected. Across all of the species examined, a higher density of primary veins predicted tolerance of midrib damage. This benefit for palmate venation is consistent with its repeated evolution and its biogeographic and habitat distribution. All leaves tested showed complete tolerance of damage to second- and higher-order veins, demonstrating that the parallel flow paths provided by the redundant, reticulate minor vein network protect the leaf from the impact of hydraulic disruption. These findings point to a hydraulic explanation for the diversification of low-order vein architecture and the commonness of reticulate, hierarchical leaf venation. These structures suggest roles for both economic constraints and risk tolerance in shaping leaf morphology during 130 million years of flowering plant evolution.

153 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: A single ‘fast–slow’ plant economics spectrum that integrates across leaves, stems and roots is a key feature of the plant universe and helps to explain individual ecological strategies, community assembly processes and the functioning of ecosystems.
Abstract: Summary 1. The leaf economics spectrum (LES) provides a useful framework for examining species strategies as shaped by their evolutionary history. However, that spectrum, as originally described, involved only two key resources (carbon and nutrients) and one of three economically important plant organs. Herein, I evaluate whether the economics spectrum idea can be broadly extended to water – the third key resource –stems, roots and entire plants and to individual, community and ecosystem scales. My overarching hypothesis is that strong selection along trait trade-off axes, in tandem with biophysical constraints, results in convergence for any taxon on a uniformly fast, medium or slow strategy (i.e. rates of resource acquisition and processing) for all organs and all resources. 2. Evidence for economic trait spectra exists for stems and roots as well as leaves, and for traits related to water as well as carbon and nutrients. These apply generally within and across scales (within and across communities, climate zones, biomes and lineages). 3. There are linkages across organs and coupling among resources, resulting in an integrated whole-plant economics spectrum. Species capable of moving water rapidly have low tissue density, short tissue life span and high rates of resource acquisition and flux at organ and individual scales. The reverse is true for species with the slow strategy. Different traits may be important in different conditions, but as being fast in one respect generally requires being fast in others, being fast or slow is a general feature of species. 4. Economic traits influence performance and fitness consistent with trait-based theory about underlying adaptive mechanisms. Traits help explain differences in growth and survival across resource gradients and thus help explain the distribution of species and the assembly of communities across light, water and nutrient gradients. Traits scale up – fast traits are associated with faster rates of ecosystem processes such as decomposition or primary productivity, and slow traits with slow process rates. 5. Synthesis. Traits matter. A single ‘fast–slow’ plant economics spectrum that integrates across leaves, stems and roots is a key feature of the plant universe and helps to explain individual ecological strategies, community assembly processes and the functioning of ecosystems.

2,246 citations

Journal ArticleDOI
TL;DR: Understanding differential competitive potentials among co-occurring species mediated by shade tolerance is critical to predict ecosystem responses to global change drivers such as elevated CO2, climate change and the spread of invasive species.
Abstract: Light gradients are ubiquitous in nature, so all plants are exposed to some degree of shade during their lifetime. The minimum light required for survival, shade tolerance, is a crucial life-history trait that plays a major role in plant community dynamics. There is consensus on the suites of traits that influence shade tolerance, but debate over the relative importance of traits maximizing photosynthetic carbon gain in low light versus those minimizing losses. Shade tolerance is influenced by plant ontogeny and by numerous biotic and abiotic factors. Although phenotypic plasticity tends to be low in shade-tolerant species (e.g., scant elongation in low light), plasticity for certain traits, particularly for morphological features optimizing light capture, can be high. Understanding differential competitive potentials among co-occurring species mediated by shade tolerance is critical to predict ecosystem responses to global change drivers such as elevated CO2, climate change and the spread of invasive spe...

1,167 citations

Journal ArticleDOI
TL;DR: The extension of the SGH presented here provides specific and testable hypotheses to foster research and helps to reconcile potential discrepancies among previous studies.
Abstract: Summary 1. The stress-gradient hypothesis (SGH) predicts that the frequency of facilitative and competitive interactions will vary inversely across abiotic stress gradients, with facilitation being more common in conditions of high abiotic stress relative to more benign abiotic conditions. With notable exceptions, most tests of the SGH have studied the interaction between a single pair or a few pairs of species, and thus have evaluated shifts in the magnitude and direction of pair-wise interactions along stress gradients, rather than shifts in the general frequency of interactions. 2. The SGH has been supported by numerous studies in many ecosystems, has provided a crucial foundation for studying the interplay between facilitation and competition in plant communities, and has a high heuristic value. However, recent empirical research indicates that factors like the variation among species and the nature of the stress gradient studied add complexity not considered in the SGH, creating an opportunity to extend the SGH’s general conceptual framework. 3. We suggest that one approach for extending the SGH framework is to differentiate between the original idea of how ‘common’ interactions might be along stress gradients and the ubiquitous empirical approach of studying shifts in the strength of pair-wise interactions. Furthermore, by explicitly considering the life history of the interacting species (relative tolerance to stress vs. competitive ability) and the characteristics of the stress factor (resource vs. non-resource) we may be able to greatly refine specific predictions relevant to the SGH. 4. We propose that the general pattern predicted by the SGH would hold more frequently for some combinations of life histories and stress factor, particularly when the benefactor and beneficiary species are mostly competitive and stress-tolerant, respectively. However, we also predict that other combinations are likely to yield different results. For example, the effect of neighbours can be negative at both ends of the stress gradient when both interacting species have similar ‘competitive’ or ‘stress-tolerant’ life histories and the abiotic stress gradient is driven by a resource (e.g. water). 5. Synthesis. The extension of the SGH presented here provides specific and testable hypotheses to foster research and helps to reconcile potential discrepancies among previous studies. It represents an important step in incorporating the complexity and species-specificity of potential outcomes into models and theories addressing how plant‐plant interactions change along stress gradients.

1,110 citations

Journal ArticleDOI
TL;DR: Common scales of shade, drought, and waterlogging tolerance for 806 North American, European/West Asian, and East Asian temperate shrubs and trees were constructed to test the hypotheses that shade tolerance is negatively related to drought andWaterlogging tolerances, and that these correlations vary among continents and plant functional types.
Abstract: Lack of information on ecological characteristics of species across different continents hinders development of general world-scale quantitative vegetation dynamic models. We constructed common scales of shade, drought, and waterlogging tolerance for 806 North American, European/West Asian, and East Asian temperate shrubs and trees representing about 40% of the extant natural Northern Hemisphere species pool. These scales were used to test the hypotheses that shade tolerance is negatively related to drought and waterlogging tolerances, and that these correlations vary among continents and plant functional types. We observed significant negative correlations among shade and drought tolerance rankings for all data pooled, and separately for every continent and plant functional type, except for evergreen angiosperms. Another significant trade-off was found for drought and waterlogging tolerance for all continents, and for evergreen and deciduous angiosperms, but not for gymnosperms. For all data pooled, for Europe and East Asia, and for evergreen and deciduous angiosperms, shade tolerance was also negatively associated with waterlogging tolerance. Quantile regressions revealed that the negative relationship between shade and drought tolerance was significant for species growing in deep to moderate shade and that the negative relationship between shade and waterlogging tolerance was significant for species growing in moderate shade to high light, explaining why all relationships between different tolerances were negative according to general regression analyses. Phylogenetic signal in the tolerance to any one of the three environmental factors studied was significant but low, with only 21-24% of cladogram nodes exhibiting significant conservatism. The inverse relationships between different tolerances were significant in phylogenetically independent analyses both for the overall pool of species and for two multispecies genera (Pinus and Quercus) for which reliable molecular phylogenies were available. Only 2.6-10.3% of the species were relatively tolerant to two environmental stresses simultaneously (tolerance value � 3), and only three species were tolerant to all three stresses, supporting the existence of functional trade-offs in adjusting to multiple environmental limitations. These trade-offs represent a constraint for niche differentiation, reducing the diversity of plant responses to the many combinations of irradiance and water supply that are found in natural ecosystems.

950 citations