scispace - formally typeset
Search or ask a question
Author

David Schäfer

Bio: David Schäfer is an academic researcher from Helmholtz Centre for Environmental Research - UFZ. The author has contributed to research in topics: Climate change & Agriculture. The author has an hindex of 8, co-authored 11 publications receiving 406 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins.
Abstract: Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical character...

124 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of a seasonal hydrologic prediction system for soil moisture drought forecasting over Europe is investigated, based on meteorological forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale hydrological model (mHM).
Abstract: Droughts diminish crop yields and can lead to severe socioeconomic damages and humanitarian crises (e.g., famine). Hydrologic predictions of soil moisture droughts several months in advance are needed to mitigate the impact of these extreme events. In this study, the performance of a seasonal hydrologic prediction system for soil moisture drought forecasting over Europe is investigated. The prediction system is based on meteorological forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale hydrologic model (mHM). The skill of the NMME-based forecasts is compared against those based on the ensemble streamflow prediction (ESP) approach for the hindcast period of 1983–2009. The NMME-based forecasts exhibit an equitable threat score that is, on average, 69% higher than the ESP-based ones at 6-month lead time. Among the NMME-based forecasts, the full ensemble outperforms the single best-performing model CFSv2, as well as all subensembles. Subensembles, however, ...

96 citations

Journal ArticleDOI
TL;DR: The German drought monitor was established in 2014 as an online platform as mentioned in this paper, which uses an operational modeling system that consists of four steps: (1) a daily update of observed meteorological data by the German Weather Service, with consistency checks and interpolation; (2) an estimation of current soil moisture using the mesoscale hydrological model; (3) calculation of a quantile-based soil moisture index (SMI) based on a 60 year data record; and (4) classification of the SMI into five drought classes ranging from abnormally dry to exceptional drought
Abstract: The 2003 drought event in Europe had major implications on many societal sectors, including energy production, health, forestry and agriculture. The reduced availability of water accompanied by high temperatures led to substantial economic losses on the order of 1.5 Billion Euros, in agriculture alone. Furthermore, soil droughts have considerable impacts on ecosystems, forest fires and water management. Monitoring soil water availability in near real-time and at high-resolution, i.e., 4 × 4 km2, enables water managers to mitigate the impact of these extreme events. The German drought monitor was established in 2014 as an online platform. It uses an operational modeling system that consists of four steps: (1) a daily update of observed meteorological data by the German Weather Service, with consistency checks and interpolation; (2) an estimation of current soil moisture using the mesoscale hydrological model; (3) calculation of a quantile-based soil moisture index (SMI) based on a 60 year data record; and (4) classification of the SMI into five drought classes ranging from abnormally dry to exceptional drought. Finally, an easy to understand map is produced and published on a daily basis on www.ufz.de/droughtmonitor. Analysis of the ongoing 2015 drought event, which garnered broad media attention, shows that 75% of the German territory underwent drought conditions in July 2015. Regions such as Northern Bavaria and Eastern Saxony, however, have been particularly prone to drought conditions since autumn 2014. Comparisons with historical droughts show that the 2015 event is amongst the ten most severe drought events observed in Germany since 1954 in terms of its spatial extent, magnitude and duration.

96 citations

Journal ArticleDOI
TL;DR: In this article, the authors used six regional preconditioned hydrological models set up in seven large river basins: Upper-Amazon, Blue Nile, Ganges, Upper-Niger, Upper Mississippi, Rhine, and Upper Yellow.
Abstract: Recent climate change impact studies studies have presented conflicting results regarding the largest source of uncertainty in essential hydrological variables, especially streamflow and derived characteristics that describe the evolution of drought events. Part of the problem arises from the lack of a consistent framework to address compatible initial conditions for the impact models and a set of standardized historical and future forcings. The ISI-MIP2 project provides a good opportunity to advance our understanding of the propagation of forcing and model uncertainties on to century-long time series of drought characteristics using an ensemble of hydrological model (HM) projections across a broad range of climate scenarios and regions. To achieve this goal, we used six regional preconditioned hydrological models set up in seven large river basins: Upper-Amazon, Blue-Nile, Ganges, Upper-Niger, Upper-Mississippi, Rhine, and Upper-Yellow. These models were forced with bias-corrected outputs from five CMIP5 general circulation models (GCMs) under two extreme representative concentration pathway scenarios (i.e., RCP2.6 and RCP8.5) for the period 1971-2099. The simulated streamflow was transformed into a monthly runoff index (RI) to analyze the attributions of the GCM and HM uncertainties on to drought magnitudes and durations over time. The results indicated that GCM uncertainty mostly dominated over HM uncertainty for the projections of runoff drought characteristics, irrespective of the selected RCP and region. In general, the overall uncertainty increased with time. The uncertainty in the drought characteristics increased as the radiative forcing of the RCP increased, but the propagation of the GCM uncertainty on to a drought characteristic depended largely upon the hydro-climatic regime. Although our study emphasizes the need for multi-model ensembles for the assessment of future drought projections, the agreement between the GCM forcings was still too weak to draw conclusive recommendations.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a fully automated sequential screening method that selects only informative parameters for a given model output, which requires a number of model evaluations that is approximately 10 times the number of parameters.
Abstract: Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

56 citations


Cited by
More filters
01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

948 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, was used to estimate the impacts of 1-3'k global mean temperature increases on soil moisture droughts in Europe.
Abstract: Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1–3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent. Severe drought plagued Europe in 2003, amplifying heatwave conditions that killed more than 30,000 people. Assuming business as usual, such soil moisture deficits will become twice as frequent in the future and affect up to two-thirds of the European population.

362 citations

Journal ArticleDOI
TL;DR: In this article, the authors use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties.
Abstract: Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For RS and RS + METEO setups respectively, we estimate 2001–2013 global (±1 s.d.) net radiation as 75.49 ± 1.39 W m−2 and 77.52 ± 2.43 W m−2, sensible heat as 32.39 ± 4.17 W m−2 and 35.58 ± 4.75 W m−2, and latent heat flux as 39.14 ± 6.60 W m−2 and 39.49 ± 4.51 W m−2 (as evapotranspiration, 75.6 ± 9.8 × 103 km3 yr−1 and 76 ± 6.8 × 103 km3 yr−1). FLUXCOM products are suitable to quantify global land-atmosphere interactions and benchmark land surface model simulations. Machine-accessible metadata file describing the reported data (ISA-Tab format)

319 citations