scispace - formally typeset
D

David Schurig

Researcher at University of Utah

Publications -  108
Citations -  24704

David Schurig is an academic researcher from University of Utah. The author has contributed to research in topics: Metamaterial & Lens (optics). The author has an hindex of 33, co-authored 107 publications receiving 22899 citations. Previous affiliations of David Schurig include Duke University & University of California, San Diego.

Papers
More filters
Journal ArticleDOI

Controlling Electromagnetic Fields

TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Journal ArticleDOI

Metamaterial Electromagnetic Cloak at Microwave Frequencies

TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Journal ArticleDOI

Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors.

TL;DR: A bilayer of materials for which not all of the principal elements of the permeability and permittivity tensors have the same sign can transfer a field distribution from one side to the other, including near fields, without requiring internal exponentially growing waves.
Journal ArticleDOI

One path to acoustic cloaking

TL;DR: In this paper, it was shown that the acoustic equations in a fluid are identical in form to the single polarization Maxwell equations via a variable exchange that also preserves boundary conditions, and the existence of transformation-type solutions for the 2D acoustic equations with anisotropic mass via time harmonic simulations of acoustic cloaking.
Journal ArticleDOI

Full-wave simulations of electromagnetic cloaking structures.

TL;DR: Full electromagnetic simulations of the cylindrical version of this cloaking structure are reported, using ideal and nonideal electromagnetic parameters that show that the low-reflection and power-flow bending properties of the electromagnetic cloaky structure are not especially sensitive to modest permittivity and permeability variations.