scispace - formally typeset
Search or ask a question
Author

David Schurig

Bio: David Schurig is an academic researcher from University of Utah. The author has contributed to research in topics: Metamaterial & Lens (optics). The author has an hindex of 33, co-authored 107 publications receiving 22899 citations. Previous affiliations of David Schurig include Duke University & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a square electromagnetic cloak and an omni-directional electromagnetic field concentrator are described and the functionality of the devices is numerically confirmed by two-dimensional finite element simulations.
Abstract: The technique of applying form-invariant, spatial coordinate transformations of Maxwell’s equations can facilitate the design of structures with unique electromagnetic or optical functionality. Here, we illustrate the transformation-optical approach in the designs of a square electromagnetic cloak and an omni-directional electromagnetic field concentrator. The transformation equations are described and the functionality of the devices is numerically confirmed by two-dimensional finite element simulations. The two devices presented demonstrate that the transformation optic approach leads to the specification of complex, anisotropic and inhomogeneous materials with well directed and distinct electromagnetic behavior.

770 citations

Journal ArticleDOI
TL;DR: In this article, a lithographically patterned inductive-capacitive resonator is described that has a strong electric response and can be used to construct metamaterials with desired positive or negative permittivity.
Abstract: A lithographically patterned inductive-capacitive resonator is described that has a strong electric response. This resonator can be used to construct metamaterials with desired positive or negative permittivity. Such materials provide an alternative to wire media, and have the benefit of not requiring continuous current paths between unit cells. A planar medium composed of these resonators was simulated, fabricated, and measured in the microwave frequency range.

756 citations

Journal ArticleDOI
TL;DR: The calculation of material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them can then implement invisibility cloaks in flat space and a method is described for performing geometric ray tracing in these materials.
Abstract: Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them The resulting material properties can then implement invisibility cloaks in flat space We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability

741 citations

Journal ArticleDOI
TL;DR: This work applies finite, embedded coordinate transformations to the design of several devices, including a parallel beam shifter and a beam splitter, both of which are reflectionless and exhibit unusual electromagnetic behavior as confirmed by 2D full-wave simulations.
Abstract: Transformation optics offers an unconventional approach to the control of electromagnetic fields. The transformation optical structures proposed to date, such as electromagnetic "invisibility" cloaks and concentrators, are inherently reflectionless and leave the transmitted wave undisturbed. Here, we expand the class of transformation optical structures by introducing finite, embedded coordinate transformations, which allow the electromagnetic waves to be steered or focused. We apply the method to the design of several devices, including a parallel beam shifter and a beam splitter, both of which are reflectionless and exhibit unusual electromagnetic behavior as confirmed by 2D full-wave simulations.

496 citations

Journal ArticleDOI
TL;DR: In this article, the sensitivity of this subwavelength focus to the slab material properties and periodicity was studied, and the connection to slab surface plasmon modes was made.
Abstract: A planar slab of material, for which both the permittivity and permeability have the values of −1, can bring not only the propagating fields associated with a source to a focus, but can also refocus the nonpropagating near fields, thereby achieving resolution beyond the diffraction limit. We study the sensitivity of this subwavelength focus to the slab material properties and periodicity, and note the connection to slab surface plasmon modes. We conclude that significant subwavelength resolution is achievable with a single negative index slab, but only over a restrictive range of parameters.

485 citations


Cited by
More filters
Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations

Journal ArticleDOI
10 Nov 2006-Science
TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Abstract: A recently published theory has suggested that a cloak of invisibility is in principle possible, at least over a narrow frequency band. We describe here the first practical realization of such a cloak; in our demonstration, a copper cylinder was "hidden" inside a cloak constructed according to the previous theoretical prescription. The cloak was constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies. The cloak decreased scattering from the hidden object while at the same time reducing its shadow, so that the cloak and object combined began to resemble empty space.

6,830 citations

Journal ArticleDOI
21 Oct 2011-Science
TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Abstract: Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

6,763 citations

Journal ArticleDOI
TL;DR: This work fabricate, characterize, and analyze a MM absorber with a slightly lower predicted A(omega) of 96%.
Abstract: We present the design for an absorbing metamaterial (MM) with near unity absorbance A(omega). Our structure consists of two MM resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a MM absorber with a slightly lower predicted A(omega) of 96%. Unlike conventional absorbers, our MM consists solely of metallic elements. The substrate can therefore be optimized for other parameters of interest. We experimentally demonstrate a peak A(omega) greater than 88% at 11.5 GHz.

5,550 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations