scispace - formally typeset
Search or ask a question
Author

David Silbersweig

Other affiliations: Hammersmith Hospital, Harvard University, Cornell University  ...read more
Bio: David Silbersweig is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Functional neuroimaging & Amygdala. The author has an hindex of 53, co-authored 140 publications receiving 13685 citations. Previous affiliations of David Silbersweig include Hammersmith Hospital & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that cerebrovascular disease may predispose, precipitate, or perpetuate some geriatric depressive syndromes and the hypothesis is supported by the comorbidity of depression, vascular disease, and vascular risk factors and the association of ischemic lesions to distinctive behavioral symptoms.
Abstract: We propose that cerebrovascular disease may predispose, precipitate, or perpetuate some geriatric depressive syndromes. The "vascular depression" hypothesis is supported by the comorbidity of depression, vascular disease, and vascular risk factors and the association of ischemic lesions to distinctive behavioral symptoms. Disruption of prefrontal systems or their modulating pathways by single lesions or by an accumulation of lesions exceeding a threshold are hypothesized to be central mechanisms in vascular depression. The vascular depression concept can generate studies of clinical and heuristic value. Drugs used for the prevention and treatment of cerebrovascular disease may be shown to reduce the risk for vascular depression or improve its outcomes. The choice of antidepressants in vascular depression may depend on their effect on neurologic recovery from ischemic lesions. Research can clarify the pathways to vascular depression by focusing on the site of the lesion, the resultant brain dysfunction, the presentation of depression and time of onset, and the contribution of nonbiological factors.

1,625 citations

Journal ArticleDOI
TL;DR: Investigating differences in the distribution of relative regional cerebral blood flow during motor imagery and execution of a joy-stick movement with positron emission tomography suggested that imagined movements can be viewed as a special form of "motor behavior' that activate areas associated heretofore with selection of actions and multisensory integration.
Abstract: 1. Differences in the distribution of relative regional cerebral blood flow during motor imagery and execution of a joy-stick movement were investigated in six healthy volunteers with the use of positron emission tomography (PET). Both tasks were compared with a common baseline condition, motor preparation, and with each other. Data were analyzed for individual subjects and for the group, and areas of significant flow differences were related to anatomy by magnetic resonance imaging (MRI). 2. Imagining movements activated a number of frontal and parietal regions: medial and lateral premotor areas, anterior cingulate areas, ventral opercular premotor areas, and parts of superior and inferior parietal areas were all activated bilaterally when compared with preparation to move. 3. Execution of movements compared with imagining movements led to additional activations of the left primary sensorimotor cortex and adjacent areas: dorsal parts of the medial and lateral premotor cortex; adjacent cingulate areas; and rostral parts of the left superior parietal cortex. 4. Functionally distinct rostral and caudal parts of the posterior supplementary motor area (operationally defined as the SMA behind the coronal plane at the level of the anterior commissure) were identified. In the group, the rostral part of posterior SMA was activated by imagining movements, and a more caudoventral part was additionally activated during their execution. A similar dissociation was observed in the cingulate areas. Individual subjects showed that the precise site of these activations varied with the individual anatomy; however, a constant pattern of preferential activation within separate but adjacent gyri of the left hemisphere was preserved. 5. Functionally distinct regions were also observed in the parietal lobe: the caudal part of the superior parietal cortex [medial Brodmann area (BA) 7] was activated by imagining movements compared with preparing to execute them, whereas the more rostral parts of the superior parietal lobe (BA 5), mainly on the left, were additionally activated by execution of the movements. 6. Within the operculum, three functionally distinct areas were observed: rostrally, prefrontal areas (BA 44 and 45) were more active during imagined than executed movements; a ventral premotor area (BA 6) was activated during both imagined and executed movements; and more caudally in the parietal lobe, an area was found that was mainly activated by execution presumably SII. 7. These data suggest that imagined movements can be viewed as a special form of "motor behavior' that, when compared with preparing to move, activate areas associated heretofore with selection of actions and multisensory integration.(ABSTRACT TRUNCATED AT 400 WORDS)

910 citations

Journal ArticleDOI
TL;DR: An integrative theoretical framework and systems-based neurobiological model is provided that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind.
Abstract: Mindfulness-as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness), an ability to effectively modulate one's behavior (self-regulation), and a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence). This framework of self-awareness, -regulation, and -transcendence (S-ART) illustrates a method for becoming aware of the conditions that cause (and remove) distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted as supporting mechanisms for S-ART, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment, and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.

872 citations

Journal ArticleDOI
09 Nov 1995-Nature
TL;DR: A group study of five patients with classic auditory verbal hallucinations despite medication, demonstrating activations in subcortical nuclei (thalamic, stri-atal), limbic structures (especially hippocampus), and paralimbic regions (parahippocampal and cingulate gyri, as well as orbito-frontal cortex).
Abstract: HALLUCINATIONS, perceptions in the absence of external stimuli, are prominent among the core symptoms of schizophrenia. The neural correlates of these brief, involuntary experiences are not well understood, and have not been imaged selectively. We have used new positron emission tomography (PET) methods1,2 to study the brain state associated with the occurrence of hallucinations in six schizophrenic patients. Here we present a group study of five patients with classic auditory verbal hallucinations despite medication, demonstrating activations in subcortical nuclei (thalamic, stri-atal), limbic structures (especially hippocampus), and paralimbic regions (parahippocampal and cingulate gyri, as well as orbito-frontal cortex). We also present a case study of a unique, drug-naive patient with visual as well as auditory verbal hallucinations, demonstrating activations in visual and auditory/linguistic association cortices as part of a distributed cortical–subcortical network. Activity in deep brain structures, identified with group analysis, may generate or modulate hallucinations, and the particular neo-cortical regions entrained in individual patients may affect their specific perceptual content. The interaction of these distributed neural systems provides a biological basis for the bizarre reports of schizophrenic patients.

869 citations

Journal ArticleDOI
TL;DR: The patients with vascular depression had greater overall cognitive impairment and disability than those with nonvascular depression and the symptoms of vascular depression are consistent with lesions that may damage striato-pallido-thalamo-cortical pathways and other areas.
Abstract: Objective: The authors’ goal was to examine the clinical presentation of a group of depressed elderly patients with clinically defined risk factors for vascular depression compared with a group of elderly depressed patients without such risk factors. Method: Cognitive deficits, disability, and depressive symptoms were examined in 33 consecutively recruited elderly patients defined as having vascular depression and 32 patients defined as having nonvascular depression according to their scores on the Cumulative Illness Rating Scale—Geriatrics. Results: The patients with vascular depression had greater overall cognitive impairment and disability than those with nonvascular depression. Fluency and naming were more impaired in patients with vascular depression, and they had more retardation and less agitation as well as less guilt feelings and greater lack of insight. Conclusions: The symptoms of vascular depression are consistent with lesions that may damage striato-pallido-thalamo-cortical pathways and other areas. The concept of vascular depression can provide the impetus for investigations of prevention and treatment of cerebrovascular disease and for studies of the course of vascular depression and selection of antidepressants. (Am J Psychiatry 1997; 154:562‐565)

513 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Two distinct networks typically coactivated during functional MRI tasks are identified, anchored by dorsal anterior cingulate and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an “executive-control network” that links dorsolateral frontal and parietal neocortices.
Abstract: Variations in neural circuitry, inherited or acquired, may underlie important individual differences in thought, feeling, and action patterns. Here, we used task-free connectivity analyses to isolate and characterize two distinct networks typically coactivated during functional MRI tasks. We identified a "salience network," anchored by dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an "executive-control network" that links dorsolateral frontal and parietal neocortices. These intrinsic connectivity networks showed dissociable correlations with functions measured outside the scanner. Prescan anxiety ratings correlated with intrinsic functional connectivity of the dACC node of the salience network, but with no region in the executive-control network, whereas executive task performance correlated with lateral parietal nodes of the executive-control network, but with no region in the salience network. Our findings suggest that task-free analysis of intrinsic connectivity networks may help elucidate the neural architectures that support fundamental aspects of human behavior.

6,049 citations

Journal ArticleDOI
TL;DR: The standard nonparametric randomization and permutation testing ideas are developed at an accessible level, using practical examples from functional neuroimaging, and the extensions for multiple comparisons described.
Abstract: Requiring only minimal assumptions for validity, nonparametric permutation testing provides a flexible and intuitive methodology for the statistical analysis of data from functional neuroimaging experiments, at some computational expense. Introduced into the functional neuroimaging literature by Holmes et al. ([1996]: J Cereb Blood Flow Metab 16:7-22), the permutation approach readily accounts for the multiple comparisons problem implicit in the standard voxel-by-voxel hypothesis testing framework. When the appropriate assumptions hold, the nonparametric permutation approach gives results similar to those obtained from a comparable Statistical Parametric Mapping approach using a general linear model with multiple comparisons corrections derived from random field theory. For analyses with low degrees of freedom, such as single subject PET/SPECT experiments or multi-subject PET/SPECT or fMRI designs assessed for population effects, the nonparametric approach employing a locally pooled (smoothed) variance estimate can outperform the comparable Statistical Parametric Mapping approach. Thus, these nonparametric techniques can be used to verify the validity of less computationally expensive parametric approaches. Although the theory and relative advantages of permutation approaches have been discussed by various authors, there has been no accessible explication of the method, and no freely distributed software implementing it. Consequently, there have been few practical applications of the technique. This article, and the accompanying MATLAB software, attempts to address these issues. The standard nonparametric randomization and permutation testing ideas are developed at an accessible level, using practical examples from functional neuroimaging, and the extensions for multiple comparisons described. Three worked examples from PET and fMRI are presented, with discussion, and comparisons with standard parametric approaches made where appropriate. Practical considerations are given throughout, and relevant statistical concepts are expounded in appendices.

5,777 citations

Journal ArticleDOI
01 Mar 2006-Brain
TL;DR: A useful conceptual framework is provided for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated, and activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus.
Abstract: Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.

4,342 citations