scispace - formally typeset
Search or ask a question
Author

David T. Neilson

Other affiliations: Nokia, Alcatel-Lucent
Bio: David T. Neilson is an academic researcher from Bell Labs. The author has contributed to research in topics: Optical switch & Optical cross-connect. The author has an hindex of 34, co-authored 220 publications receiving 4305 citations. Previous affiliations of David T. Neilson include Nokia & Alcatel-Lucent.


Papers
More filters
Journal ArticleDOI
TL;DR: Focusing on the optical transport and switching layer, aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexed of spatial and spectral superchannels are covered.
Abstract: Celebrating the 20th anniversary of Optics Express, this paper reviews the evolution of optical fiber communication systems, and through a look at the previous 20 years attempts to extrapolate fiber-optic technology needs and potential solution paths over the coming 20 years. Well aware that 20-year extrapolations are inherently associated with great uncertainties, we still hope that taking a significantly longer-term view than most texts in this field will provide the reader with a broader perspective and will encourage the much needed out-of-the-box thinking to solve the very significant technology scaling problems ahead of us. Focusing on the optical transport and switching layer, we cover aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexing of spatial and spectral superchannels.

498 citations

Journal ArticleDOI
TL;DR: The identification of fundamental scaling disparities between the technologies used to generate and process data and those used to transport data could lead to the data transport network falling behind its required capabilities by a factor of approximately 4 every five years, leading to an optical network capacity crunch.
Abstract: Based on a variety of long-term network traffic data from different geographies and applications, in addition to long-term scaling trends of key information and communication technologies, we identify fundamental scaling disparities between the technologies used to generate and process data and those used to transport data. These disparities could lead to the data transport network falling behind its required capabilities by a factor of approximately 4 every five years. By 2024, we predict the need for 10-Tb/s optical interfaces working in 1-Pb/s optical transport systems. To satisfy these needs, multiplexing in both wavelength and space in the form of a wavelength-division multiplexing × space-division multiplexing matrix will be required. We estimate the characteristics of such systems and outline their target specifications, which reveals the need for very significant research progress in multiple areas, from system and network architectures to digital signal processing to integrated arrayed device designs, in order to avoid an optical network capacity crunch.

329 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a multi-plane light conversion scheme for large number of spatial modes in a scalable fashion, where the number of phase plates required scales with the dimensionality of the transformation.
Abstract: Multi-plane light conversion is a method of performing spatial basis transformations using cascaded phase plates separated by Fourier transforms or free-space propagation. In general, the number of phase plates required scales with the dimensionality (total number of modes) in the transformation. This is a practical limitation of the technique as it relates to scaling to large mode counts. Firstly, requiring many planes increases the complexity of the optical system itself making it difficult to implement, but also because even a very small loss per plane will grow exponentially as more and more planes are added, causing a theoretically lossless optical system, to be far from lossless in practice. Spatial basis transformations of particular interest are those which take a set of spatial modes which exist in the same or similar space, and transform them into an array of spatially separated spots. Analogous to the operation performed by a diffraction grating in the wavelength domain, or a polarizing beamsplitting in the polarization domain. Decomposing the Laguerre-Gaussian, Hermite-Gaussian or related bases to an array of spots are examples of this and are relevant to many areas of light propagation in free-space and optical fibre. In this paper we present our work on designing multi-plane light conversion devices capable or operating on large numbers of spatial modes in a scalable fashion.

266 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of silicon photonic programs and main achievements during recent years, including single-drive push-pull silicon Mach-Zehnder modulators, hybrid silicon/III-V lasers and silicon nitride assisted polarization rotators.
Abstract: Silicon photonic devices and integrated circuits have undergone rapid and significant progresses during the last decade, transitioning from research topics in universities to product development in corporations. Silicon photonics is anticipated to be a disruptive optical technology for data communications, with applications such as intra-chip interconnects, short-reach communications in datacenters and supercomputers, and long-haul optical transmissions. Bell Labs, as the research organization of Alcatel-Lucent, a network system vendor, has an optimal position to identify the full potential of silicon photonics both in the applications and in its technical merits. Additionally it has demonstrated novel and improved high-performance optical devices, and implemented multi-function photonic integrated circuits to fulfill various communication applications. In this paper, we review our silicon photonic programs and main achievements during recent years. For devices, we review highperformance single-drive push-pull silicon Mach-Zehnder modulators, hybrid silicon/III-V lasers and silicon nitrideassisted polarization rotators. For photonic circuits, we review silicon/silicon nitride integration platforms to implement wavelength-division multiplexing receivers and transmitters. In addition, we show silicon photonic circuits are well suited for dual-polarization optical coherent transmitters and receivers, geared for advanced modulation formats. We also discuss various applications in the field of communication which may benefit from implementation in silicon photonics.

231 citations

Journal ArticleDOI
TL;DR: In this article, a microelectromechanical system-based beam steering optical crossconnect switch core with port count exceeding 1100 was presented, featuring mean fiber-to-fiber insertion loss of 2.1 dB and maximum insertion loss 4.0 dB across all possible connections.
Abstract: We present a microelectromechanical systems-based beam steering optical crossconnect switch core with port count exceeding 1100, featuring mean fiber-to-fiber insertion loss of 2.1 dB and maximum insertion loss of 4.0 dB across all possible connections. The challenge of efficient measurement and optimization of all possible connections was met by an automated testing facility. The resulting connections feature optical loss stability of better than 0.2 dB over days, without any feedback control under normal laboratory conditions.

208 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
28 Oct 2004-Nature
TL;DR: The experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index and confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
Abstract: Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components1,2,3. Furthermore, it is highly desirable to use silicon—the dominant material in the microelectronic industry—as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon4,5, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III–V compound semiconductors6,7, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers8,9,10,11,12,13,14,15 in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction16 of efficient optical switching in silicon using resonant structures.

1,506 citations

Journal ArticleDOI
TL;DR: This article proposes a novel, spectrum- efficient, and scalable optical transport network architecture called SLICE, which enables sub-wavelength, superwa wavelength, and multiple-rate data traffic accommodation in a highly spectrum-efficient manner, thereby providing a fractional bandwidth service.
Abstract: The sustained growth of data traffic volume calls for an introduction of an efficient and scalable transport platform for links of 100 Gb/s and beyond in the future optical network. In this article, after briefly reviewing the existing major technology options, we propose a novel, spectrum- efficient, and scalable optical transport network architecture called SLICE. The SLICE architecture enables sub-wavelength, superwavelength, and multiple-rate data traffic accommodation in a highly spectrum-efficient manner, thereby providing a fractional bandwidth service. Dynamic bandwidth variation of elastic optical paths provides network operators with new business opportunities offering cost-effective and highly available connectivity services through time-dependent bandwidth sharing, energy-efficient network operation, and highly survivable restoration with bandwidth squeezing. We also discuss an optical orthogonal frequency-division multiplexing-based flexible-rate transponder and a bandwidth-variable wavelength cross-connect as the enabling technologies of SLICE concept. Finally, we present the performance evaluation and technical challenges that arise in this new network architecture.

1,489 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: Optical interconnects to silicon CMOS chips are discussed in this paper, where various arguments for introducing optical interconnections to silicon chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed.
Abstract: The various arguments for introducing optical interconnections to silicon CMOS chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed. Optics could solve many physical problems of interconnects, including precise clock distribution, system synchronization (allowing larger synchronous zones, both on-chip and between chips), bandwidth and density of long interconnections, and reduction of power dissipation. Optics may relieve a broad range of design problems, such as crosstalk, voltage isolation, wave reflection, impedence matching, and pin inductance. It may allow continued scaling of existing architectures and enable novel highly interconnected or high-bandwidth architectures. No physical breakthrough is required to implement dense optical interconnects to silicon chips, though substantial technological work remains. Cost is a significant barrier to practical introduction, though revolutionary approaches exist that might achieve economies of scale. An Appendix analyzes scaling of on-chop global electrical interconnects, including line inductance and the skin effect, both of which impose significant additional constraints on future interconnects.

1,233 citations

Journal ArticleDOI
TL;DR: There are two kinds of tutorial articles: those that provide a primer on an established topic and those that let us in on the ground floor of something of emerging importance.
Abstract: There are two kinds of tutorial articles: those that provide a primer on an established topic and those that let us in on the ground floor of something of emerging importance. The first type of tutorial can have a noted expert who has been gracious (and brave) enough to write a field guide about a particular topic. The other sort of tutorial typically involves researchers who have each been laboring on a topic for some years. Both sorts of tutorial articles are very much desired. But we, as an editorial board for both Systems and Transactions, know that there has been no logical place for them in the AESS until this series was started several years ago. With these tutorials, we hope to continue to give them a home, a welcome, and provide a service to our membership. We do not intend to publish tutorials on a regular basis, but we hope to deliver them once or twice per year. We need and welcome good, useful tutorial articles (both kinds) in relevant AESS areas. If you, the reader, can offer a topic of interest and an author to write about it, please contact us. Self-nominations are welcome, and even more ideal is a suggestion of an article that the editor(s) can solicit. All articles will be reviewed in detail. Criteria on which they will be judged include their clarity of presentation, relevance, and likely audience, and, of course, their correctness and scientific merit. As to the mathematical level, the articles in this issue are a good guide: in each case the author has striven to explain complicated topics in simple-well, tutorial-terms. There should be no (or very little) novel material: the home for archival science is the Transactions Magazine, and submissions that need to be properly peer reviewed would be rerouted there. Likewise, articles that are interesting and descriptive, but lack significant tutorial content, ought more properly be submitted to the Systems Magazine.

955 citations