scispace - formally typeset
Search or ask a question
Author

David Titterton

Bio: David Titterton is an academic researcher. The author has contributed to research in topics: Inertial navigation system & Inertial measurement unit. The author has an hindex of 5, co-authored 11 publications receiving 3016 citations.

Papers
More filters
Book
01 Jan 1997
TL;DR: In this paper, the physical principles of inertial navigation, the associated growth of errors and their compensation, and their application in a broad range of applications are discussed, drawing current technological developments and providing an indication of potential future trends.
Abstract: Inertial navigation is widely used for the guidance of aircraft, missiles ships and land vehicles, as well as in a number of novel applications such as surveying underground pipelines in drilling operations. This book discusses the physical principles of inertial navigation, the associated growth of errors and their compensation. It draws current technological developments, provides an indication of potential future trends and covers a broad range of applications. New chapters on MEMS (microelectromechanical systems) technology and inertial system applications are included.

2,536 citations

Book
17 Jan 2005
TL;DR: After the introduction of fast moving vehicles, and later when defensive or hostile weapons came into use, it was not sufficient to know where the platform was located but it was really vital to be aware of its momentary alignment, in a three dimensional space.
Abstract: photographing -not to mention walking in the city -plus those of us engaged with defense activities can state it is more convenient to get lost if one knows where this happ ens. Perhaps this is one of the key reasons why methods and technologies for navigation have been an area of continuing efforts and interest. After the introduction of fast moving vehicles, and later when defensive or hostile weapons came into use, it was not sufficient to know where the platform was located but it was really vital to be aware of its momentary alignment, of course , in a three dimensional space. New challenges were put to the shoulders of the navigator. When time, equipment. and location allow, navigation rel ying on external references such as radio beacons on ground or up in the space orbits are often preferred. However, such cooperative systems may not be available, or their performance is inadequat e for the short time constants of platform motion. We are thus forced to use autonomous navigation modes. It is here that inertial navigation systems have.

657 citations

Book ChapterDOI
01 Jan 2004
TL;DR: For the purposes of the ensuing discussion, it is assumed that measurements of specific force and angular rate are available along and about axes which are mutually perpendicular.
Abstract: The previous chapter has provided some insight into the basic measurements that are necessary for inertial navigation. For the purposes of the ensuing discussion, it is assumed that measurements of specific force and angular rate are available along and about axes which are mutually perpendicular. Attention is focused on how these measurements are combined and processed to enable navigation to take place.

25 citations

Book ChapterDOI
01 Jan 2004
TL;DR: In this chapter, the basics for inertial navigation system was discussed and an overview of external navigation aids was provided and the techniques to combine inertial measurement data with one or more of this navigation aids for system integration were presented.
Abstract: In this chapter, the basics for inertial navigation system was discussed. An overview of external navigation aids was also provided and the techniques to combine inertial measurement data with one or more of this navigation aids for system integration were presented.

10 citations

Book ChapterDOI
01 Jan 2004
TL;DR: This chapter is concerned with the real time implementation of attitude, velocity and position information from the inertial measurements in a computer.
Abstract: This chapter is concerned with the real time implementation of attitude, velocity and position information from the inertial measurements in a computer.

7 citations


Cited by
More filters
Proceedings ArticleDOI
12 Aug 2011
TL;DR: This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications, applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity sensor arrays that also include tri- axis magnetometers.
Abstract: This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications. It is applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity (MARG) sensor arrays that also include tri-axis magnetometers. The MARG implementation incorporates magnetic distortion compensation. The algorithm uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimised gradient descent algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. Performance has been evaluated empirically using a commercially available orientation sensor and reference measurements of orientation obtained using an optical measurement system. Performance was also benchmarked against the propriety Kalman-based algorithm of orientation sensor. Results indicate the algorithm achieves levels of accuracy matching that of the Kalman based algorithm; < 0.8° static RMS error, < 1.7° dynamic RMS error. The implications of the low computational load and ability to operate at small sampling rates significantly reduces the hardware and power necessary for wearable inertial movement tracking, enabling the creation of lightweight, inexpensive systems capable of functioning for extended periods of time.

1,803 citations

BookDOI
08 Apr 2011
TL;DR: In this article, the authors present a survey of the latest tools for analysis and design of advanced guidance, navigation and control systems and present new material on underwater vehicles and surface vessels.
Abstract: The technology of hydrodynamic modeling and marine craft motion control systems has progressed greatly in recent years. This timely survey includes the latest tools for analysis and design of advanced guidance, navigation and control systems and presents new material on underwater vehicles and surface vessels. Each section presents numerous case studies and applications, providing a practical understanding of how model-based motion control systems are designed.

1,389 citations

01 Jan 2007
TL;DR: This work introduces inertial navigation, focusing on strapdown systems based on MEMS devices, and concludes that whilst MEMS IMU technology is rapidly improving, it is not yet possible to build a MEMS based INS which gives sub-meter position accuracy for more than one minute of operation.
Abstract: Until recently the weight and size of inertial sensors has prohibited their use in domains such as human motion capture. Recent improvements in the performance of small and lightweight micromachined electromechanical systems (MEMS) inertial sensors have made the application of inertial techniques to such problems possible. This has resulted in an increased interest in the topic of inertial navigation, however current introductions to the subject fail to sufficiently describe the error characteristics of inertial systems. We introduce inertial navigation, focusing on strapdown systems based on MEMS devices. A combination of measurement and simulation is used to explore the error characteristics of such systems. For a simple inertial navigation system (INS) based on the Xsens Mtx inertial measurement unit (IMU), we show that the average error in position grows to over 150 m after 60 seconds of operation. The propagation of orientation errors caused by noise perturbing gyroscope signals is identified as the critical cause of such drift. By simulation we examine the significance of individual noise processes perturbing the gyroscope signals, identifying white noise as the process which contributes most to the overall drift of the system. Sensor fusion and domain specific constraints can be used to reduce drift in INSs. For an example INS we show that sensor fusion using magnetometers can reduce the average error in position obtained by the system after 60 seconds from over 150 m to around 5 m. We conclude that whilst MEMS IMU technology is rapidly improving, it is not yet possible to build a MEMS based INS which gives sub-meter position accuracy for more than one minute of operation.

924 citations

Proceedings ArticleDOI
19 Dec 2011
TL;DR: A system for fast online learning of occupancy grid maps requiring low computational resources is presented that combines a robust scan matching approach using a LIDAR system with a 3D attitude estimation system based on inertial sensing to achieve reliable localization and mapping capabilities in a variety of challenging environments.
Abstract: For many applications in Urban Search and Rescue (USAR) scenarios robots need to learn a map of unknown environments. We present a system for fast online learning of occupancy grid maps requiring low computational resources. It combines a robust scan matching approach using a LIDAR system with a 3D attitude estimation system based on inertial sensing. By using a fast approximation of map gradients and a multi-resolution grid, reliable localization and mapping capabilities in a variety of challenging environments are realized. Multiple datasets showing the applicability in an embedded hand-held mapping system are provided. We show that the system is sufficiently accurate as to not require explicit loop closing techniques in the considered scenarios. The software is available as an open source package for ROS.

919 citations

Book
Simo Srkk1
01 Sep 2013
TL;DR: This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework, learning what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages.
Abstract: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include MATLAB computations, and the numerous end-of-chapter exercises include computational assignments. MATLAB/GNU Octave source code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.

879 citations