scispace - formally typeset
Search or ask a question
Author

David Xuan-Qi Wang

Bio: David Xuan-Qi Wang is an academic researcher. The author has contributed to research in topics: Layer (electronics) & Silicon. The author has an hindex of 16, co-authored 37 publications receiving 685 citations.

Papers
More filters
Patent
09 Dec 2010
TL;DR: The back contact back junction solar cell as discussed by the authors comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and an doped backside emitter region with a polarity opposite the doped ground region.
Abstract: Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.

77 citations

Patent
05 Aug 2011
TL;DR: In this paper, a backplane for back contact solar cells that provides for solar cell substrate reinforcement and electrical interconnects is described, which comprises depositing an inter-digitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the inter-determined pattern, and attaching a second backplane having a second inter-decomposition pattern of EB electrodes and EB electrodes at the conductive EB and EB plugs.
Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.

63 citations

Patent
27 Nov 2009
TL;DR: In this paper, a partially-transparent (see-through) three-dimensional thin-film solar cell (3-D TFSC) substrate is presented, which includes a plurality of unit cells.
Abstract: The present disclosure presents a partially-transparent (see-through) three-dimensional thin film solar cell (3-D TFSC) substrate. The substrate includes a plurality of unit cells. Each unit cell structure has the shape of a truncated pyramid, and its parameters may be varied to allow a desired portion of sunlight to pass through.

53 citations

Patent
18 Aug 2008
TL;DR: In this paper, the authors proposed a method for selectively coating the top surfaces or ridges of a 3D substrate while avoiding liquid coating material wicking into micro cavities on 3D substrates.
Abstract: Methods here disclosed provide for selectively coating the top surfaces or ridges of a 3-D substrate while avoiding liquid coating material wicking into micro cavities on 3-D substrates. The substrate includes holes formed in a three-dimensional substrate by forming a sacrificial layer on a template. The template includes a template substrate with posts and trenches between the posts. The steps include subsequently depositing a semiconductor layer and selectively etching the sacrificial layer. Then, the steps include releasing the semiconductor layer from the template and coating the 3-D substrate using a liquid transfer coating step for applying a liquid coating material to a surface of the 3-D substrate. The method may further include coating the 3-D substrate by selectively coating the top ridges or surfaces of the substrate. Additional features may include filling the micro cavities of the substrate with a filling material, removing the filling material to expose only the substrate surfaces to be coated, coating the substrate with a layer of liquid coating material, and removing said filling material from the micro cavities of the substrate.

53 citations

Patent
28 May 2009
TL;DR: In this paper, the authors present methods and apparatuses for fracturing or breaking a buried porous semiconductor layer to separate a 3D thin-film semiconductor semiconductor (TFSS) substrate from a 3-D crystalline semiconductor template.
Abstract: The present disclosure relates to methods and apparatuses for fracturing or breaking a buried porous semiconductor layer to separate a 3-D thin-film semiconductor semiconductor (TFSS) substrate from a 3-D crystalline semiconductor template. The method involves forming a sacrificial porous semiconductor layer on the 3-D features of the template. A variety of techniques may be used to fracture and release the mechanically weak porous semiconductor layer without damaging the TFSS substrate layer or the template layer such as pressure variations, thermal stress generation, and mechanical bending. The methods also allow for processing three dimensional features not possible with current separation processes. Optional cleaning and final lift-off steps may be performed as part of the release step or after the release step.

49 citations


Cited by
More filters
Patent
19 Dec 2014
TL;DR: A high efficiency configuration for a solar cell module comprises solar cells arranged in a shingled manner to form super cells, which may be arranged to efficiently use the area of the solar module, reduce series resistance, and increase module efficiency as mentioned in this paper.
Abstract: A high efficiency configuration for a solar cell module comprises solar cells arranged in a shingled manner to form super cells, which may be arranged to efficiently use the area of the solar module, reduce series resistance, and increase module efficiency.

164 citations

Patent
16 Feb 2011
TL;DR: In this paper, a mounting assembly for installing solar cell or photovoltaic modules on a building surface is described, which includes a mounting device (74c), a stud (114), a clamping member (142), and a nut (128) that may be threaded onto the stud to secure the clamping members to the mounting device.
Abstract: A mounting assembly (70c) for installing solar cell or photovoltaic modules (58) on a building surface (34) is disclosed. The mounting assembly (70c) includes a mounting device (74), a stud (114) that may be threaded to the mounting device (74), a clamping member (142) that may be positioned on the stud (114), and a nut (128) that may be threaded onto the stud (114) to secure the clamping member (142) to the mounting device (74). A mounting plate (110') is disposed somewhere between the clamping member (142) and the mounting device (74). This mounting plate (110') includes a raised structure or dome (174) on its upper surface (170) for positionally registering modules (58) thereto, a plurality of grounding projections (172) on this same upper surface (170), and a plurality of wiring tabs or clips (178) on its lower surface (176).

127 citations

Patent
17 Sep 2010
TL;DR: In this paper, photosensitive devices and associated methods are provided, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrategies and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to an electrical substrate and operable to transfer an electrical signal from the at least 1 junction.
Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.

113 citations

Patent
04 Feb 2010
TL;DR: In this paper, a solar cell and a method for manufacturing the same is described, which includes a substrate of a first conductive type, an anti-reflection layer that is positioned on the substrate and is formed of a transparent conductive oxide material.
Abstract: A solar cell and a method for manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type, an anti-reflection layer that is positioned on the substrate and is formed of a transparent conductive oxide material, a plurality of emitter layers on the substrate, the plurality of emitter layers being of a second conductive type opposite the first conductive type, a plurality of first electrodes on the plurality of emitter layers, and a plurality of second electrodes that are electrically connected to the substrate and are positioned to be spaced apart from the plurality of first electrodes. The first electrodes and the second electrodes are positioned on the same surface of the substrate.

112 citations

Patent
22 May 2014
TL;DR: In this article, a technique for enhancing the absorption of photons in semiconductors with the use of microstructures such as pillars and/or holes is described. But this technique is limited to silicon photodiodes with wavelengths of 850 nm and with quantum efficiencies of approximately 90% or more.
Abstract: Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as pillars and/or holes, effectively increase the effective absorption length resulting in a greater absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more.

110 citations