scispace - formally typeset
Search or ask a question
Author

Davide Farnocchia

Other affiliations: Jet Propulsion Laboratory
Bio: Davide Farnocchia is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Near-Earth object & Asteroid. The author has an hindex of 20, co-authored 77 publications receiving 1619 citations. Previous affiliations of Davide Farnocchia include Jet Propulsion Laboratory.


Papers
More filters
Journal ArticleDOI
01 Jun 2014-Icarus
TL;DR: The OSIRIS-REx asteroid sample return mission target, (101955) Bennu (formerly 1999 RQ 36), is a half-kilometer near-Earth asteroid with an extraordinarily well constrained orbit as mentioned in this paper.

238 citations

Journal ArticleDOI
27 Jun 2018-Nature
TL;DR: ‘Oumuamua—the first known interstellar object to have entered the Solar System—is probably a comet, albeit with unusual dust and chemical properties owing to its origin in a distant solar system.
Abstract: ‘Oumuamua (1I/2017 U1) is the first known object of interstellar origin to have entered the Solar System on an unbound and hyperbolic trajectory with respect to the Sun1. Various physical observations collected during its visit to the Solar System showed that it has an unusually elongated shape and a tumbling rotation state1–4 and that the physical properties of its surface resemble those of cometary nuclei5,6, even though it showed no evidence of cometary activity1,5,7. The motion of all celestial bodies is governed mostly by gravity, but the trajectories of comets can also be affected by non-gravitational forces due to cometary outgassing8. Because non-gravitational accelerations are at least three to four orders of magnitude weaker than gravitational acceleration, the detection of any deviation from a purely gravity-driven trajectory requires high-quality astrometry over a long arc. As a result, non-gravitational effects have been measured on only a limited subset of the small-body population9. Here we report the detection, at 30σ significance, of non-gravitational acceleration in the motion of ‘Oumuamua. We analyse imaging data from extensive observations by ground-based and orbiting facilities. This analysis rules out systematic biases and shows that all astrometric data can be described once a non-gravitational component representing a heliocentric radial acceleration proportional to r−2 or r−1 (where r is the heliocentric distance) is included in the model. After ruling out solar-radiation pressure, drag- and friction-like forces, interaction with solar wind for a highly magnetized object, and geometric effects originating from ‘Oumuamua potentially being composed of several spatially separated bodies or having a pronounced offset between its photocentre and centre of mass, we find comet-like outgassing to be a physically viable explanation, provided that ‘Oumuamua has thermal properties similar to comets.

185 citations

Journal ArticleDOI
TL;DR: Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, a notable transition is found in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface.
Abstract: The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids.

144 citations

Journal ArticleDOI
06 Dec 2019-Science
TL;DR: The properties and behavior of particles ejected from Bennu are analyzed to determine the possible mechanisms of ejection and provide understanding of the broader population of active asteroids.
Abstract: INTRODUCTION Active asteroids are small bodies in the Solar System that show ongoing mass loss, such as the ejection of dust, which may be caused by large impacts, volatile release, or rotational acceleration. Studying them informs our understanding of the evolution and destruction of asteroids and the origin of volatile materials such as water on Earth. The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) spacecraft has rendezvoused with the near-Earth asteroid (101955) Bennu. The selection of Bennu as the OSIRIS-REx target was partially based on its spectral similarity to some active asteroids. Observations designed to detect mass loss at Bennu were conducted from Earth and during the spacecraft’s approach, but no signs of asteroid activity were found. However, when the spacecraft entered orbit in January 2019, we serendipitously observed particles in the vicinity of Bennu that had apparently been ejected from its surface. RATIONALE We analyzed the properties and behavior of particles ejected from Bennu to determine the possible mechanisms of ejection and provide understanding of the broader population of active asteroids. Images obtained by the spacecraft indicate multiple discrete ejection events with a range of energies and resultant particle trajectories. We characterized three large ejection events that respectively occurred on 6 January, 19 January, and 11 February 2019. Tracking of individual particles across multiple images by means of optical navigation techniques provided the initial conditions for orbit determination modeling. By combining these approaches, we estimated the locations and times of ejection events and determined initial velocity vectors of particles. We estimated the particle sizes and the minimum energies of the ejection events using a particle albedo and density consistent with observations of Bennu. RESULTS Particles with diameters from 3 m s–1. Estimated energies ranged from 270 mJ for the 6 January event to 8 mJ for the 11 February event. The three events arose from widely separated sites, which do not show any obvious geological distinction from the rest of Bennu’s surface. However, these events all occurred in the late afternoon, between about 15:00 and 18:00 local solar time. In addition to discrete ejection events, we detected a persistent background of particles in the Bennu environment. Some of these background particles have been observed to persist on temporary orbits that last several days—in one case, with a semimajor axis >1 km. The orbital characteristics of these gravitationally bound objects make it possible to determine the ratio of their cross-sectional area to their mass. Combined with their photometric phase functions, this information constrains the parameter space of the particles’ diameters, densities, and albedos. CONCLUSION Plausible mechanisms for the large ejection events include thermal fracturing, volatile release through dehydration of phyllosilicates, and meteoroid impacts. The late-afternoon timing of the events is consistent with any of these mechanisms. Bennu’s boulder geology indicates that thermal fracturing, perhaps enhanced by volatile release, could occur on the asteroid surface. Smaller events, especially those that occur on the night side of Bennu, could be attributable to reimpacting particles. Our observations classify Bennu as an active asteroid. Active asteroids are commonly identified by major mass loss events observable with telescopes, on scales much greater than we observed at Bennu. Our findings indicate that there is a continuum of mass loss event magnitudes among active asteroids.

142 citations

Journal ArticleDOI
01 May 2013-Icarus
TL;DR: In this article, the Yarkovsky effect among near Earth asteroids (NEAs) was investigated by measuring the YARKovsky-related orbital drift from the orbital fit using a high precision dynamical model, including the Newtonian attraction of 16 massive asteroids and the planetary relativistic terms.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors show the operational environment of asteroid Bennu, validate its photometric phase function and demonstrate the accelerating rotational rate due to YORP effect using the data acquired during the approach phase of OSIRIS-REx mission.
Abstract: During its approach to asteroid (101955) Bennu, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu’s immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission’s safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu’s surface to an upper limit of 150 g s–1 averaged over 34 min. Bennu’s disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu’s rotation rate is accelerating continuously at 3.63 ± 0.52 × 10–6 degrees day–2, likely due to the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, with evolutionary implications.

905 citations

Journal ArticleDOI
Federica Spoto1, Federica Spoto2, Paolo Tanga2, Francois Mignard2  +498 moreInstitutions (86)
TL;DR: In this paper, the authors describe the processing of the Gaia DR2 data, and describe the criteria used to select the sample published in Gaia DR 2, and explore the data set to assess its quality.
Abstract: Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations.Aims. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality.Methods. To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP).Results. The overall astrometric performance is close to the expectations, with an optimal range of brightness G ~ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ~ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects.

584 citations

Journal ArticleDOI
TL;DR: The OSIRIS-REx spacecraft departed for near-Earth asteroid (101955) Bennu via an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu as discussed by the authors.
Abstract: In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

440 citations

Journal ArticleDOI
TL;DR: This term, students will be taking courses for the winter term of 2019-20, which will be the last term of the 2018-19 academic year.
Abstract: September 19-20 International Student Orientation September 22 New Student check-In for Undergraduates September 22-29 New Student Orientation for Undergraduates September 23 New Student Check-In for Graduates September 23-27 New Student Orientation for Graduates September 26 Undergraduate Academic Standards and Honors Committee – 1:00 p.m. September 27 Undergraduate Academic Standards and Honors Committee Appeals– 1:00 p.m. September 30 Rosh Hashanah – classes excused October 1 Beginning of instruction 8:00 a.m. October 18 Last day for adding courses and removing conditions and incompletes October 30Midterm examination period November 5 November 11 Midterm deficiency notices due 9:00 a.m. November 20 Last day for dropping courses, exercising pass/fail option, and changing sections November 21Registration for winter term 2019-20 December 6 November 28-29 Thanksgiving (Institute holiday) December 6 Last day of classes Last day to register for winter term 2019-20 without a $50 late fee December 7-10 Study period December 11*-13 Final examinations, fall term 2019-20 December 13 End of fall term 2019-20 December 14Winter recess January 5 December 18 Instructors' final grade reports due 9:00 a.m. *First due date for final examinations

324 citations