scispace - formally typeset
Search or ask a question
Author

Davide Mei

Bio: Davide Mei is an academic researcher from University of Florence. The author has contributed to research in topics: Epilepsy & Dravet syndrome. The author has an hindex of 39, co-authored 98 publications receiving 3598 citations. Previous affiliations of Davide Mei include University of Alabama at Birmingham & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
01 Jul 2006-Brain
TL;DR: The high prevalence of mutations causing protein truncations confirms that loss of function is the major cause of the disorder.
Abstract: Periventricular heterotopia (PH) occurs when collections of neurons lay along the lateral ventricles or just beneath. Human Filamin A gene (FLNA) mutations are associated with classical X-linked bilateral periventricular nodular heterotopia (PNH), featuring contiguous heterotopic nodules, mega cisterna magna, cardiovascular malformations and epilepsy. FLNA encodes an F-actin-binding cytoplasmic phosphoprotein and is involved in early brain neurogenesis and neuronal migration. A rare, recessive form of bilateral PNH with microcephaly and severe delay is associated with mutations of the ADP-ribosylation factor guanine nucleotide-exchange factor-2 (ARFGEF2) gene, required for vesicle and membrane trafficking from the trans-Golgi. However, PH is a heterogeneous disorder. We studied clinical and brain MRI of 182 patients with PH and, based on its anatomic distribution and associated birth defects, identified 15 subtypes. Classical bilateral PNH represented the largest group (98 patients: 54%). The 14 additional phenotypes (84 patients: 46%) included PNH with Ehlers-Danlos syndrome (EDS), temporo-occipital PNH with hippocampal malformation and cerebellar hypoplasia, PNH with fronto-perisylvian or temporo-occipital polymicrogyria, posterior PNH with hydrocephalus, PNH with microcephaly, PNH with frontonasal dysplasia, PNH with limb abnormalities, PNH with fragile-X syndrome, PNH with ambiguous genitalia, micronodular PH, unilateral PNH, laminar ribbon-like and linear PH. We performed mutation analysis of FLNA in 120 patients, of whom 72 (60%) had classical bilateral PNH and 48 (40%) other PH phenotypes, and identified 25 mutations in 40 individuals. Sixteen mutations had not been reported previously. Mutations were found in 35 patients with classical bilateral PNH, in three with PNH with EDS and in two with unilateral PNH. Twenty one mutations were nonsense and frame-shift and four missense. The high prevalence of mutations causing protein truncations confirms that loss of function is the major cause of the disorder. FLNA mutations were found in 100% of familial cases with X-linked PNH (10 families: 8 with classical bilateral PNH, 1 with EDS and 1 with unilateral PH) and in 26% of sporadic patients with classical bilateral PNH. Overall, mutations occurred in 49% of individuals with classical bilateral PNH irrespective of their being familial or sporadic. However, the chances of finding a mutation were exceedingly gender biased with 93% of mutations occurring in females and 7% in males. The probability of finding FLNA mutations in other phenotypes was 4% but was limited to the minor variants of PNH with EDS and unilateral PNH. Statistical analysis considering all 42 mutations described so far identifies a hotspot region for PNH in the actin-binding domain (P < 0.05).

304 citations

Journal ArticleDOI
TL;DR: SCN1A is the most clinically relevant epilepsy gene, most mutations lead to severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+).
Abstract: Purpose: SCN1A is the most clinically relevant epilepsy gene, most mutations lead to severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+). We studied 132 patients with epilepsy syndromes with seizures precipitated by fever, and performed phenotype-genotype correlations with SCN1A alterations. Methods: We included patients with SMEI including borderline SMEI (SMEB), GEFS+, febrile seizures (FS), or other seizure types precipitated by fever. We performed a clinical and genetic study focusing on SCN1A, using dHPLC, gene sequencing, and MLPA to detect genomic deletions/duplications on SMEI/SMEB patients. Results: We classified patients as: SMEI/SMEB = 55; GEFS+ = 26; and other phenotypes = 51. SCN1A analysis by dHPLC/sequencing revealed 40 mutations in 37 SMEI/SMEB (67%) and 3 GEFS+ (11.5%) probands. MLPA showed genomic deletions in 2 of 18 SMEI/SMEB. Most mutations were de novo (82%). SMEB patients carrying mutations (8) were more likely to have missense mutations (62.5%), conversely SMEI patients (31) had more truncating, splice site or genomic alterations (64.5%). SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS compared to those with missense mutations and without mutations (p = 0.00007, ANOVA test). None of the remaining patients with seizures precipitated by fever carried SCN1A mutations. Conclusion: We obtained a frequency of 71% SCN1A abnormalities in SMEI/SMEB and of 11.5% in GEFS+ probands. MLPA complements DNA sequencing of SCN1A increasing the mutation detection rate. SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS. This study confirms the high sensitivity of SCN1A for SMEI/SMEB phenotypes. © 2007 International League Against Epilepsy.

171 citations

Journal ArticleDOI
TL;DR: It is shown that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases.
Abstract: Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in 'Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315-1325, 1998; Sheen et al. in 'Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69-76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in 'MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789-801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (alpha-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventricular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell adhesion and loss of neuroependymal integrity.

165 citations

Journal ArticleDOI
TL;DR: The type, frequency, and size of microchromosomal copy number variations affecting the neuronal sodium channel α 1 subunit gene (SCN1A) in Dravet syndrome, other epileptic encephalopathies, and generalized epilepsy with febrile seizures plus are determined.
Abstract: P>Objective:We aimed to determine the type, frequency, and size of microchromosomal copy number variations (CNVs) affecting the neuronal sodium channel alpha 1 subunit gene (SCN1A) in Dravet syndrome (DS), other epileptic encephalopathies, and generalized epilepsy with febrile seizures plus (GEFS+).Methods:Multiplex ligation-dependent probe amplification (MLPA) was applied to detect SCN1A CNVs among 289 cases (126 DS, 97 GEFS+, and 66 with other phenotypes). CNVs extending beyond SCN1A were further characterized by comparative genome hybridization (array CGH).Results:Novel SCN1A CNVs were found in 12.5% of DS patients where sequence-based mutations had been excluded. We identified the first partial SCN1A duplications in two siblings with typical DS and in a patient with early-onset symptomatic generalized epilepsy. In addition, a patient with DS had a partial SCN1A amplification of 5-6 copies. The remaining CNVs abnormalities were four partial and nine whole SCN1A deletions involving contiguous genes. Two CNVs (a partial SCN1A deletion and a duplication) were inherited from a parent, in whom there was mosaicism. Array CGH showed intragenic deletions of 90 kb and larger, with the largest of 9.3 Mb deleting 49 contiguous genes and extending beyond SCN1A.Discussion:Duplication and amplification involving SCN1A are now added to molecular mechanisms of DS patients. Our findings showed that 12.5% of DS patients who are mutation negative have MLPA-detected SCN1A CNVs with an overall frequency of about 2-3%. MLPA is the established second-line testing strategy to reliably detect all CNVs of SCN1A from the megabase range down to one exon. Large CNVs extending outside SCN1A and involving contiguous genes can be precisely characterized by array CGH.

150 citations

Journal ArticleDOI
TL;DR: Data show that panels targeting about 100 genes represent the best cost‐effective diagnostic option in pediatric drug‐resistant epilepsies and enable molecular diagnosis of atypical phenotypes, allowing to broaden phenotype–genotype correlations.
Abstract: Targeted resequencing gene panels are used in the diagnostic setting to identify gene defects in epilepsy. We performed targeted resequencing using a 30-genes panel and a 95-genes panel in 349 patients with drug-resistant epilepsies beginning in the first years of life. We identified 71 pathogenic variants, 42 of which novel, in 30 genes, corresponding to 20.3% of the probands. In 66% of mutation positive patients seizures onset occurred before age 6 months. The 95-genes panel allowed a genetic diagnosis in 22 (6.3%) patients that would have otherwise been missed using the 30-gene panel. About 50% of mutations were identified in genes coding for sodium and potassium channel components. SCN2A was the most frequently mutated gene followed by SCN1A, KCNQ2, STXBP1, SCN8A, CDKL5 and MECP2. Twenty-nine mutations were identified in 23 additional genes, most of them recently associated with epilepsy. Our data show that panels targeting about 100 genes represent the best cost-effective diagnostic option in pediatric drug-resistant epilepsies. They enable molecular diagnosis of atypical phenotypes, allowing to broaden phenotype-genotype correlations. Molecular diagnosis might influence patient's management and translate into better and specific treatment recommendations in some conditions. This article is protected by copyright. All rights reserved

129 citations


Cited by
More filters
Journal ArticleDOI
01 May 2012-Brain
TL;DR: This review addresses recent changes in the perception of malformations of cerebral cortical development and proposes a modified classification based upon updates in the knowledge of cerebral cortex development.
Abstract: Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.

854 citations

Journal ArticleDOI
TL;DR: An exhaustive review of the clinical genetics and research genetics literature in an attempt to collate all genes and recurrent genomic imbalances that have been implicated in the etiology of ASD shows that autism is not a single clinical entity but a behavioral manifestation of tens or perhaps hundreds of genetic and genomic disorders.

851 citations

Journal ArticleDOI
TL;DR: Important advances are being gained in the understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins, including novel functions at the Golgi complex and in cilia formation.
Abstract: Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF-like (ARL) proteins and SAR1, regulate membrane traffic and organelle structure by recruiting cargo-sorting coat proteins, modulating membrane lipid composition, and interacting with regulators of other G proteins. New roles of ARF and ARL proteins are emerging, including novel functions at the Golgi complex and in cilia formation. Their function is under tight spatial control, which is mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyse GTP exchange and hydrolysis, respectively. Important advances are being gained in our understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins.

749 citations

Journal ArticleDOI
TL;DR: A revised classification based on the stage of development at which cortical development was first affected is proposed, using genotype, rather than phenotype, as the basis for classifying disorders wherever the genotype–phenotype relationship is adequately understood.
Abstract: Increasing recognition of malformations of cortical development and continuing improvements in imaging techniques, molecular biologic techniques, and knowledge of mechanisms of brain development have resulted in continual improvement of the understanding of these disorders. The authors propose a revised classification based on the stage of development (cell proliferation, neuronal migration, cortical organization) at which cortical development was first affected. The categories are based on known developmental steps, known pathologic features, known genetics (when possible), and, when necessary, neuroimaging features. In those cases in which the precise developmental and genetic features are uncertain, classification is based on known relationships among the genetics, pathologic features, and neuroimaging features. The major change since the prior classification has been a shift to using genotype, rather than phenotype, as the basis for classifying disorders wherever the genotype-phenotype relationship is adequately understood. Other substantial changes include more detailed classification of congenital microcephalies, particularly those in which the genes have been mapped or identified, and revised classification of congenital muscular dystrophies and polymicrogyrias. Information on genetic testing is also included. This classification allows a better conceptual understanding of the disorders, and the use of neuroimaging characteristics allows it to be applied to all patients without necessitating brain biopsy, as in pathology-based classifications.

747 citations

Book
15 Oct 2002
TL;DR: Treatment and quality of life have improved because the syndrome-specific efficacy profile of drugs is better known, and there is heightened awareness that compounds with severe cognitive side-effects and heavy polytherapies should be avoided.
Abstract: 10·5 million children worldwide are estimated to have active epilepsy. Over the past 15 years, syndrome-oriented clinical and EEG diagnosis, and better aetiological diagnosis, especially supported by neuroimaging, has helped to clarify the diversity of epilepsy in children, and has improved management. Perinatal and postinfective encephalopathy, cortical dysplasia, and hippocampal sclerosis account for the most severe symptomatic epilepsies. Ion channel defects can underlie both benign age-related disorders and severe epileptic encephalopathies with a progressive disturbance in cerebral function. However, the reasons for age-related expression in children are not understood. Neither are the mechanisms whereby an epileptic encephalopathy originates. Several new drugs have been recently introduced but have provided limited therapeutic benefits. However, treatment and quality of life have improved because the syndrome-specific efficacy profile of drugs is better known, and there is heightened awareness that compounds with severe cognitive side-effects and heavy polytherapies should be avoided. Epilepsy surgery is an important option for a few well-selected individuals, but should be considered with great caution when there is no apparent underlying brain lesion.

740 citations