Author
Dawn M. Reding
Other affiliations: Luther College, National Museum of Natural History, University of Hawaii at Manoa
Bio: Dawn M. Reding is an academic researcher from Iowa State University. The author has contributed to research in topics: Population & Genetic structure. The author has an hindex of 9, co-authored 14 publications receiving 338 citations. Previous affiliations of Dawn M. Reding include Luther College & National Museum of Natural History.
Papers
More filters
TL;DR: In this article, the authors analyzed movement paths of 23 animals to parameterize landscape resistance surfaces, applied least cost path analysis to generate measures of effective geographic distance between DNA collection locations of 625 bobcats, and tested the correlation between genetic distance and different models of geographic distance.
Abstract: Spatial heterogeneity can constrain the movement of individuals and consequently genes across a landscape, influencing demographic and genetic processes. In this study, we linked information on landscape composition, movement behavior, and genetic differentiation to gain a mechanistic understanding of how spatial heterogeneity may influence movement and gene flow of bobcats in the agricultural landscape of Iowa (USA). We analyzed movement paths of 23 animals to parameterize landscape resistance surfaces, applied least cost path analysis to generate measures of effective geographic distance between DNA collection locations of 625 bobcats, and tested the correlation between genetic distance and the different models of geographic distance. We found that bobcats showed a strong preference for forest over any other habitat type, and that incorporating information on habitat composition both along the path and in the surrounding landscape provided the best model of movement. Measures of effective geographic distance were significantly correlated with genetic distance, but not once the effects of Euclidean distance were accounted for. Thus, despite the impact of habitat composition on movement behavior, we did not detect a signature of a landscape effect in genetic structure. Our results are consistent with the issue of limiting factors: the high uniformity of forest fragmentation across southern Iowa, the primary study area, results in a landscape resistance pattern virtually indistinguishable from the isolation-by-distance pattern. The northern portion of the state, however, is predicted to pose a high level of resistance to bobcat movement, which may impede the regional genetic connectivity of populations across the Midwest.
72 citations
TL;DR: The results suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
Abstract: The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
63 citations
TL;DR: In this article, the authors analyzed 1-kb mtDNA sequence and 15 microsatellite loci from over 1700 samples collected across its range and found that the marker types involved a longitudinal cline with a sharp transition, or suture zone, occurring along the Great Plains.
Abstract: The potential for widespread, mobile species to exhibit genetic structure without clear geographic barriers is a topic of growing interest. Yet the patterns and mechanisms of structure—particularly over broad spatial scales—remain largely unexplored for these species. Bobcats occur across North America and possess many characteristics expected to promote gene flow. To test whether historical, topographic or ecological factors have influenced genetic differentiation in this species, we analysed 1 kb mtDNA sequence and 15 microsatellite loci from over 1700 samples collected across its range. The primary signature in both marker types involved a longitudinal cline with a sharp transition, or suture zone, occurring along the Great Plains. Thus, the data distinguished bobcats in the eastern USA from those in the western half, with no obvious physical barrier to gene flow. Demographic analyses supported a scenario of expansion from separate Pleistocene refugia, with the Great Plains representing a zone of secondary contact. Substructure within the two main lineages likely reflected founder effects, ecological factors, anthropogenic/topographic effects or a combination of these forces. Two prominent topographic features, the Mississippi River and Rocky Mountains, were not supported as significant genetic barriers. Ecological regions and environmental correlates explained a small but significant proportion of genetic variation. Overall, results implicate historical processes as the primary cause of broad-scale genetic differentiation, but contemporary forces seem to also play a role in promoting and maintaining structure. Despite the bobcat’s mobility and broad niche, large-scale landscape changes have contributed to significant and complex patterns of genetic structure.
58 citations
TL;DR: Across large geographic areas, including the entire mule deer lineage, it is found that genetic variation fit an isolation‐by‐distance pattern rather than discrete clusters, indicating that ecological processes have not resulted in restrictions to gene flow sufficient for spatial genetic structure to emerge.
Abstract: Highly mobile species that thrive in a wide range of habitats are expected to show little genetic differentiation across their range. A limited but growing number of studies have revealed that patterns of broad-scale genetic differentiation can and do emerge in vagile, continuously distributed species. However, these patterns are complex and often shaped by both historical and ecological factors. Comprehensive surveys of genetic variation at a broad scale and at high resolution are useful for detecting cryptic spatial genetic structure and for investigating the relative roles of historical and ecological processes in structuring widespread, highly mobile species. In this study, we analysed 10 microsatellite loci from over 1900 samples collected across the full range of mule deer (Odocoileus hemionus), one of the most widely distributed and abundant of all large mammal species in North America. Through both individual- and population-based analyses, we found evidence for three main genetic lineages, one corresponding to the ‘mule deer’ morphological type and two to the ‘black-tailed deer’ type. Historical biogeographic events likely are the primary drivers of genetic divergence in this species; boundaries of the three lineages correspond well with predictions based on Pleistocene glacial cycles, and substructure within each lineage demonstrates island vicariance. However, across large geographic areas, including the entire mule deer lineage, we found that genetic variation fit an isolation-by-distance pattern rather than discrete clusters. A lack of genetic structure across wide geographic areas of the continental west indicates that ecological processes have not resulted in restrictions to gene flow sufficient for spatial genetic structure to emerge. Our results have important implications for our understanding of evolutionary mechanisms of divergence, as well as for taxonomy, conservation and management.
45 citations
TL;DR: This study suggests that turtles exposed to novel climatic conditions did not display a detectable stress response, nor did the novel climate depress immune function in the transplanted populations, Therefore, in terms of innate immune function, turtles may be relatively resilient to at least small changes in Climatic conditions.
Abstract: Climate change may subject animals to increasingly stressful environmental conditions, which could have negative physiological consequences if stress levels are elevated for long periods. We conducted a manipulative experiment to determine the effects of a novel climate on stress levels and immune function in a model reptile species, the painted turtle. We collected turtles from four populations across the species' geographic range and housed them in a common-garden in one population's local climate. We measured levels of the stress hormone corticosterone and tested two aspects of innate immune function, bactericidal capacity and natural antibody agglutination, at the time of capture (baseline) and three additional time points over 1 year. The four populations did not differ in corticosterone levels over the course of 1 year, and corticosterone levels were also similar at each sampling period except that post-hibernation corticosterone levels were significantly lower than the previous three time points. Furthermore, we found no evidence that elevated corticosterone depressed immune function in the painted turtle. Our study suggests that turtles exposed to novel climatic conditions did not display a detectable stress response, nor did the novel climate depress immune function in the transplanted populations. Therefore, in terms of innate immune function, turtles may be relatively resilient to at least small changes in climatic conditions.
32 citations
Cited by
More filters
01 Jan 2000
3,536 citations
Journal Article•
TL;DR: The comparison of related genomes has emerged as a powerful lens for genome interpretation as mentioned in this paper, which reveals a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons.
Abstract: The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.
926 citations
TL;DR: A new data set of 13 nuclear loci and pyrosequencing of mitochondrial genomes is analyzed that resolves the Hawaiian honeycreeper phylogeny and shows that they are a sister taxon to Eurasian rosefinches and probably came to Hawaii from Asia.
Abstract: Summary Evolutionary theory has gained tremendous insight from studies of adaptive radiations. High rates of speciation, morphological divergence, and hybridization, combined with low sequence variability, however, have prevented phylogenetic reconstruction for many radiations. The Hawaiian honeycreepers are an exceptional adaptive radiation, with high phenotypic diversity and speciation that occurred within the geologically constrained setting of the Hawaiian Islands. Here we analyze a new data set of 13 nuclear loci and pyrosequencing of mitochondrial genomes that resolves the Hawaiian honeycreeper phylogeny. We show that they are a sister taxon to Eurasian rosefinches ( Carpodacus ) and probably came to Hawaii from Asia. We use island ages to calibrate DNA substitution rates, which vary substantially among gene regions, and calculate divergence times, showing that the radiation began roughly when the oldest of the current large Hawaiian Islands (Kauai and Niihau) formed, ∼5.7 million years ago (mya). We show that most of the lineages that gave rise to distinctive morphologies diverged after Oahu emerged (4.0–3.7 mya) but before the formation of Maui and adjacent islands (2.4–1.9 mya). Thus, the formation of Oahu, and subsequent cycles of colonization and speciation between Kauai and Oahu, played key roles in generating the morphological diversity of the extant honeycreepers.
425 citations
TL;DR: The current understanding of vertebrate TE diversity and evolution is reviewed and the current bottleneck in genome analyses lies in the proper annotation of TEs and examples where superficial analyses led to misleading conclusions about genome evolution are provided.
Abstract: Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
197 citations
TL;DR: The theoretical framework for factors that influence time lags are reviewed, approaches to address this temporal disconnect in landscape genetic studies are summarized, and it is concluded that the time lag problem can be exploited to strengthen inferences about recent landscape changes and to establish conservation baselines.
Abstract: Landscape genetics seeks to determine the effect of landscape features on gene flow and genetic structure. Often, such analyses are intended to inform conservation and management. However, depending on the many factors that influence the time to reach equilibrium, genetic structure may more strongly represent past rather than contemporary landscapes. This well-known lag between current demographic processes and population genetic structure often makes it challenging to interpret how contemporary landscapes and anthropogenic activity shape gene flow. Here, we review the theoretical framework for factors that influence time lags, summarize approaches to address this temporal disconnect in landscape genetic studies, and evaluate ways to make inferences about landscape change and its effects on species using genetic data alone or in combination with other data. Those approaches include comparing correlation of genetic structure with historical versus contemporary landscapes, using molecular markers with different rates of evolution, contrasting metrics of genetic structure and gene flow that reflect population genetic processes operating at different temporal scales, comparing historical and contemporary samples, combining genetic data with contemporary estimates of species distribution or movement, and controlling for phylogeographic history. We recommend using simulated data sets to explore time lags in genetic structure, and argue that time lags should be explicitly considered both when designing and interpreting landscape genetic studies. We conclude that the time lag problem can be exploited to strengthen inferences about recent landscape changes and to establish conservation baselines, particularly when genetic data are combined with other data.
195 citations