scispace - formally typeset
Search or ask a question
Author

Dean A. Fennell

Bio: Dean A. Fennell is an academic researcher from University of Leicester. The author has contributed to research in topics: Mesothelioma & Pemetrexed. The author has an hindex of 48, co-authored 212 publications receiving 10488 citations. Previous affiliations of Dean A. Fennell include University Hospitals of Leicester NHS Trust & Queen's University Belfast.


Papers
More filters
Journal ArticleDOI
TL;DR: Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor.
Abstract: BackgroundAmong patients with non–small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early-stage NSCLC. MethodsIn this prospective cohort study, we performed multiregion whole-exome sequencing on 100 early-stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence-free survival. ResultsWe observed widespread intratumor heterogeneity for both somatic copy-number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution w...

1,679 citations

Journal ArticleDOI
Christopher Abbosh1, Nicolai Juul Birkbak2, Nicolai Juul Birkbak1, Gareth A. Wilson1, Gareth A. Wilson2, Mariam Jamal-Hanjani1, Tudor Constantin3, Raheleh Salari3, John Le Quesne4, David A. Moore4, Selvaraju Veeriah1, Rachel Rosenthal1, Teresa Marafioti1, Eser Kirkizlar3, Thomas B.K. Watkins1, Thomas B.K. Watkins2, Nicholas McGranahan2, Nicholas McGranahan1, Sophia Ward1, Sophia Ward2, Luke Martinson4, Joan Riley4, Francesco Fraioli1, Maise Al Bakir2, Eva Grönroos2, Francisco Zambrana1, Raymondo Endozo1, Wenya Linda Bi5, Wenya Linda Bi6, Fiona M. Fennessy6, Fiona M. Fennessy5, Nicole Sponer3, Diana Johnson1, Joanne Laycock1, Seema Shafi1, Justyna Czyzewska-Khan1, Andrew Rowan2, Tim Chambers2, Nik Matthews7, Nik Matthews2, Samra Turajlic8, Samra Turajlic2, Crispin T. Hiley2, Crispin T. Hiley1, Siow Ming Lee1, Martin Forster1, Tanya Ahmad1, Mary Falzon1, Elaine Borg1, David Lawrence1, Martin Hayward1, Shyam Kolvekar1, Nikolaos Panagiotopoulos1, Sam M. Janes1, Ricky Thakrar1, Asia Ahmed1, Fiona H Blackhall9, Yvonne Summers, Dina Hafez3, Ashwini Naik3, Apratim Ganguly3, Stephanie Kareht3, Rajesh Shah, Leena Dennis Joseph, Anne Marie Quinn, Phil Crosbie, Babu Naidu10, Gary Middleton10, Gerald Langman, Simon Trotter, Marianne Nicolson11, Hardy Remmen11, Keith M. Kerr11, Mahendran Chetty11, Lesley Gomersall11, Dean A. Fennell4, Apostolos Nakas12, Sridhar Rathinam12, Girija Anand13, Sajid Khan14, Peter Russell15, Veni Ezhil16, Babikir Ismail17, Melanie Irvin-Sellers17, Vineet Prakash17, Jason F. Lester18, Malgorzata Kornaszewska19, Richard Attanoos19, Haydn Adams18, Helen E. Davies18, Dahmane Oukrif1, Ayse U. Akarca1, John A. Hartley1, Helen Lowe1, Sara Lock20, Natasha Iles1, Harriet Bell1, Yenting Ngai1, Greg Elgar2, Zoltan Szallasi21, Zoltan Szallasi22, Zoltan Szallasi23, Roland F. Schwarz24, Javier Herrero1, Aengus Stewart2, Sergio A. Quezada1, Karl S. Peggs1, Peter Van Loo2, Peter Van Loo25, Caroline Dive9, Caroline Dive1, C. Jimmy Lin3, Matthew Rabinowitz3, Hugo J.W.L. Aerts6, Hugo J.W.L. Aerts5, Allan Hackshaw1, Jacqui Shaw4, Bernhard Zimmermann3, Charles Swanton2, Charles Swanton1 
25 May 2017-Nature
TL;DR: It is shown that phylogenetic ct DNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.
Abstract: The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.

1,179 citations

Journal ArticleDOI
TL;DR: Combination chemotherapy, generally platinum-based plus etoposide or irinotecan, is the mainstay first-line treatment for metastatic small-cell lung cancer as discussed by the authors.

969 citations

Journal ArticleDOI
30 Nov 2017-Cell
TL;DR: It is found that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity.

850 citations

Journal ArticleDOI
TL;DR: The ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up for malignant pleural mesothelioma show clear trends in survival and morbidity and recommend a 6-month to 12-monthFollow-up period for diagnosis and treatment.

372 citations


Cited by
More filters
Journal ArticleDOI
23 Mar 2018-Science
TL;DR: New-generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy, and evidence points to alterations that converge on the antigen presentation and interferon-γ signaling pathways.
Abstract: The release of negative regulators of immune activation (immune checkpoints) that limit antitumor responses has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte–associated protein 4 (CTLA-4) or the programmed cell death 1 (PD-1) pathway, either alone or in combination. The main premise for inducing an immune response is the preexistence of antitumor T cells that were limited by specific immune checkpoints. Most patients who have tumor responses maintain long-lasting disease control, yet one-third of patients relapse. Mechanisms of acquired resistance are currently poorly understood, but evidence points to alterations that converge on the antigen presentation and interferon-γ signaling pathways. New-generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy.

3,736 citations

Journal ArticleDOI
TL;DR: This Perspective has organized known cancer-associated metabolic changes into six hallmarks: deregulated uptake of glucose and amino acids, use of opportunistic modes of nutrient acquisition, useof glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, increased demand for nitrogen, alterations in metabolite-driven gene regulation, and metabolic interactions with the microenvironment.

3,565 citations

Journal ArticleDOI
TL;DR: There are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.
Abstract: Resistance to chemotherapy and molecularly targeted therapies is a major problem facing current cancer research. The mechanisms of resistance to 'classical' cytotoxic chemotherapeutics and to therapies that are designed to be selective for specific molecular targets share many features, such as alterations in the drug target, activation of prosurvival pathways and ineffective induction of cell death. With the increasing arsenal of anticancer agents, improving preclinical models and the advent of powerful high-throughput screening techniques, there are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.

3,514 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations