scispace - formally typeset
Search or ask a question
Author

Dean A. Samara-Rubio

Bio: Dean A. Samara-Rubio is an academic researcher from Intel. The author has contributed to research in topics: Optical modulator & Silicon photonics. The author has an hindex of 15, co-authored 27 publications receiving 2533 citations.

Papers
More filters
Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: An approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation is described and an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz is demonstrated.
Abstract: Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only ∼20 MHz (refs 10, 11), although it has been predicted theoretically that a ∼1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

1,612 citations

Journal ArticleDOI
TL;DR: A silicon modulator with an intrinsic bandwidth of 10 GHz and data transmission from 6 Gbps to 10 Gbps is demonstrated.
Abstract: We demonstrate a silicon modulator with an intrinsic bandwidth of 10 GHz and data transmission from 6 Gbps to 10 Gbps Such unprecedented bandwidth performance in silicon is achieved through improvements in material quality, device design, and driver circuitry

545 citations

Proceedings ArticleDOI
01 Jul 2004
TL;DR: In this article, a high-speed all-silicon optical phase modulator with a metal-oxide-semiconductor (MOS) capacitance was proposed, which can be used to modulate the phase of the optical mode due to free-carrier plasma dispersion effect.
Abstract: We present design, fabrication, and testing of a high-speed all-silicon optical phase modulator in silicon-on-insulator (SOI). The optical modulator is based on a novel silicon waveguide phase shifter containing a metal-oxide-semiconductor (MOS) capacitor. We show that, under the accumulation condition, the drive voltage induced charge density change in the silicon waveguide having a MOS capacitor can be used to modulate the phase of the optical mode due to the free-carrier plasma dispersion effect. We experimentally determined the phase modulation efficiency of the individual phase shifter and compared measurements with simulations. A good agreement between theory and experiment was obtained for various phase shifter lengths. We also characterized both the low- and high-frequency performance of the integrated Mach-Zehnder interferometer (MZI) modulator. For a MZI device containing two identical phase shifters of 10 mm, we obtained a DC extinction ratio above 16 dB. For a MZI modulator containing a single-phase shifter of 2.5 mm in one of the two arms, the frequency dependence of the optical response was obtained by a small signal measurement. A 3-dB bandwidth exceeding 1 GHz was demonstrated. This modulation frequency is two orders of magnitude higher than has been demonstrated in any silicon modulators based on current injection in SOI.

65 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented an optimized design and detailed simulation of an all-silicon optical modulator based on a silicon waveguide phase shifter containing a metaloxide-semiconductor (MOS) capacitor.
Abstract: We present an optimized design and detailed simulation of an all-silicon optical modulator based on a silicon waveguide phase shifter containing a metal-oxide-semiconductor (MOS) capacitor. Based on a fully vectorial Maxwell mode solver, we analyze the modal characteristics of the silicon waveguide. We show that shrinking the waveguide size and reducing gate oxide thickness significantly enhances the phase modulation efficiency because of the optical field enhancement in the voltage induced charge layers of the MOS capacitor, which, in turn, induce refractive index modulation in silicon due to free carrier dispersion effects. We also analyze the device speed by transient semiconductor device modeling. As both optical absorption and modulation bandwidth increase with increasing doping concentration, we show that, with a nonuniform doping profile in the waveguide, balance between the device operation speed and optical loss can be realized. Our simulation suggests that a TE-polarized optical phase modulator with a bandwidth of 10 GHz and an on-chip optical loss less than 2 dB is achievable in silicon.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed two high speed silicon optical modulators with GHz bandwidth and discussed their design, performance, and limitations, and outlined a path that can enable realization of further device improvements.
Abstract: Silicon photonics has recently attracted a great deal of attention because it offers an opportunity for low cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnect. One area of silicon photonics research that has seen an exceptional increase in activity and advancement is high speed silicon optical modulation. Within three years, modulation bandwidth has increased nearly three orders of magnitude from MHz range to 10 GHz range. This paper reviews two high speed silicon optical modulators with GHz bandwidth. It discusses in detail their design, performance, and limitations; and it outlines a path that can enable realization of further device improvements.

41 citations


Cited by
More filters
Journal ArticleDOI
02 Jun 2011-Nature
TL;DR: Graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.
Abstract: Graphene, the single-atom-thick form of carbon, holds promise for many applications, notably in electronics where it can complement or be integrated with silicon-based devices. Intense efforts have been devoted to develop a key enabling device, a broadband, fast optical modulator with a small device footprint. Now Liu et al. demonstrate an exciting new possibility for graphene in the area of on-chip optical communication: a graphene-based optical modulator integrated with a silicon chip. This new device relies on the electrical tuning of the Fermi level of the graphene sheet, and achieves modulation of guided light at frequencies over 1 gigahertz, together with a broad operating spectrum. At just 25 square micrometres in area, it is one of the smallest of its type. Integrated optical modulators with high modulation speed, small footprint and large optical bandwidth are poised to be the enabling devices for on-chip optical interconnects1,2. Semiconductor modulators have therefore been heavily researched over the past few years. However, the device footprint of silicon-based modulators is of the order of millimetres, owing to its weak electro-optical properties3. Germanium and compound semiconductors, on the other hand, face the major challenge of integration with existing silicon electronics and photonics platforms4,5,6. Integrating silicon modulators with high-quality-factor optical resonators increases the modulation strength, but these devices suffer from intrinsic narrow bandwidth and require sophisticated optical design; they also have stringent fabrication requirements and limited temperature tolerances7. Finding a complementary metal-oxide-semiconductor (CMOS)-compatible material with adequate modulation speed and strength has therefore become a task of not only scientific interest, but also industrial importance. Here we experimentally demonstrate a broadband, high-speed, waveguide-integrated electroabsorption modulator based on monolayer graphene. By electrically tuning the Fermi level of the graphene sheet, we demonstrate modulation of the guided light at frequencies over 1 GHz, together with a broad operation spectrum that ranges from 1.35 to 1.6 µm under ambient conditions. The high modulation efficiency of graphene results in an active device area of merely 25 µm2, which is among the smallest to date. This graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.

3,105 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

2,110 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA).
Abstract: The pace of the development of silicon photonics has quickened since 2004 due to investment by industry and government. Commercial state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55-mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA). The preliminary results indicate that the silicon photonics are truly CMOS compatible. RD however, lasing has not yet been attained. The new paradigm for the Si-based photonic and optoelectric integrated circuits is that these chip-scale networks, when suitably designed, will operate at a wavelength anywhere within the broad spectral range of 1.2-100 mum, with cryocooling needed in some cases

1,789 citations

Journal ArticleDOI
28 Oct 2004-Nature
TL;DR: The experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index and confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
Abstract: Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components1,2,3. Furthermore, it is highly desirable to use silicon—the dominant material in the microelectronic industry—as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon4,5, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III–V compound semiconductors6,7, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers8,9,10,11,12,13,14,15 in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction16 of efficient optical switching in silicon using resonant structures.

1,506 citations