scispace - formally typeset
Search or ask a question
Author

Dean C. Douglass

Bio: Dean C. Douglass is an academic researcher from Bell Labs. The author has contributed to research in topics: Diffusion (business) & Self-diffusion. The author has an hindex of 25, co-authored 41 publications receiving 2273 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used high resolution NMR to profile the curing dynamics in real time of two monomer mixes, one predominantly HEMA and the other a HEMA/NVP/TBE comonomer.
Abstract: This paper reports on the use of high resolution NMR to profile the curing dynamics in real time of two monomer mixes, one predominantly HEMA and the other a HEMA/NVP/TBE comonomer. FTIR data on the same materials permit examination of the complementarity of NMR and FTIR in probing curing dynamics. The observed responses are compared with simulations generated by a new program which is applicable to an N-component monomer mix, using published reactivity ratios for NVP and HEMA and those of a reasonable analogue for TBE. The ability to monitor NMR chemical shift and line shapes as curing proceeds provides additional insight into the curing dynamics. Differences in the curing profiles observed in the two experimental approaches are rationalized in terms of their relative sensitivities to short and longer range effects in the curing monomer. Agreement among data types is good whereas details relating to relative sensitivities are in part tentative and merit more detailed investigation.

10 citations

Journal ArticleDOI
TL;DR: The self-diffusion coefficient of polyisobutylene is 1.2 × 10−5 cm at infinite dilution in CS2 and 0.44 × 10 −5 cm in CCl4 as mentioned in this paper.
Abstract: Various self-diffusion and nuclear relaxation experiments are reported for a polyisobutylene of rather low molecular weight, in bulk and in solution. In the bulk, the self-diffusion coefficient obeys the Arrhenius relation, yielding an activation energy of 5.5 kcal./mole. In solution the activation energies are lower, approaching the value for the solvent at low concentration. The self-diffusion coefficient of the polymer at infinite dilution is 1.2 × 10−5 cm.2/sec. in CS2 and 0.44 × 10−5 cm.2/sec. in CCl4. The ratio is close to the inverse ratio of the solvent viscosities. Measurements of self-diffusion of the solvent have been made for cyclohexane in polyisobutylene. A simple interpretation of the data in terms of Stokes-Einstein models yields molecular dimensions which are too small by a factor of two or three.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a derivation of the effect of a time-dependent magnetic field gradient on the spin-echo experiment, particularly in the presence of spin diffusion, is given.
Abstract: A derivation is given of the effect of a time‐dependent magnetic field gradient on the spin‐echo experiment, particularly in the presence of spin diffusion. There are several reasons for preferring certain kinds of time‐dependent magnetic field gradients to the more usual steady gradient. If the gradient is reduced during the rf pulses, H1 need not be particularly large; if the gradient is small at the time of the echo, the echo will be broad and its amplitude easy to measure. Both of these relaxations of restrictions on the measurement of diffusion coefficients by the spin‐echo technique serve to extend its range of applicability. Furthermore, a pulsed gradient can be recommended when it is critical to define the precise time period over which diffusion is being measured.The theoretical expression derived has been verified experimentally for several choices of time dependent magnetic field gradient. An apparatus is described suitable for the production of pulsed gradients with amplitudes as large as 100 ...

7,781 citations

Journal ArticleDOI
TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Abstract: Equivalent weight (EW) is the number of grams of dry Nafion per mole of sulfonic acid groups when the material is in the acid form. This is an average EW in the sense that the comonomer sequence distribution (that is usually unknown to the investigator and largely unreported) gives a distribution in m in this formula. EW can be ascertained by acid-base titration, by analysis of atomic sulfur, and by FT-IR spectroscopy. The relationship between EW and m is EW ) 100m + 446 so that, for example, the side chains are separated by around 14 CF2 units in a membrane of 1100 EW. Common at the time of this writing are Nafion 117 films. The designation “117” refers to a film having 1100 EW and a nominal thickness of 0.007 in., although 115 and 112 films have also been available. Early-reported studies involved 1200 EW samples as well as special experimental varieties, some being rather thin. The equivalent weight is related to the property more often seen in the field of conventional ion exchange resins, namely the ion exchange capacity (IEC), by the equation IEC ) 1000/EW. The mention of the molecular weight of high equivalent weight (EW > 1000 g‚mol-1) Nafion is almost absent in the literature, although the range 105-106 Da has been mentioned. As this polymer does not form true solutions, the common methods of light scattering and gel permeation chromatography cannot be used to determine molecular weight as well as the size and shape of isolated, truly dissolved molecules. Studies of the structure of this polymer in solvent (albeit not a true solution) will be mentioned in the scattering section of this review. It should be noted that Curtin et al. performed size exclusion chromatography determinations of the molecular weight distribution in Nafion aqueous dispersions after they were heated to high temperatures (230, 250, and 270 °C).1 Before heating, there was a high molecular weight shoulder on a bimodal distribution, due to molecular aggregates, but this shoulder disappeared upon heating, which indicated that the aggregates were disrupted. The peaks for the monomodal distribution for the heated samples were all located at molecular weights slightly higher than 105 g‚mol-1. Also, light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure. Nafion ionomers are usually derived from the thermoplastic -SO2F precursor form that can be extruded into sheets of required thickness. Strong interactions between the ionic groups are an obstacle to melt processing. This precursor does not possess the clustered morphology that will be of great concern in this article but does possess Teflon-like crystallinity which persists when the sulfonyl fluoride form is converted to, for example, the K+ form by reacting it with KOH in water and DMSO. Thereafter, the -SO3H form is achieved by soaking the film in a sufficiently concentrated aqueous acid solution. Extrusion of the sulfonyl fluoride precursor can cause microstructural orientation in the machine direction, * Address correspondence to either author. Phone: 601-266-5595/ 4480. Fax: 601-266-5635. E-mail: Kenneth.Mauritz@usm.edu; RBMoore@usm.edu. 4535 Chem. Rev. 2004, 104, 4535−4585

4,130 citations

Journal ArticleDOI
24 Sep 1982-Science
TL;DR: Osmolyte compatibility is proposed to result from the absence of osmolytes interactions with substrates and cofactors, and the nonperturbing or favorable effects of oSMolytes on macromolecular-solvent interactions.
Abstract: Striking convergent evolution is found in the properties of the organic osmotic solute (osmolyte) systems observed in bacteria, plants, and animals Polyhydric alcohols, free amino acids and their derivatives, and combinations of urea and methylamines are the three types of osmolyte systems found in all water-stressed organisms except the halobacteria The selective advantages of the organic osmolyte systems are, first, a compatibility with macromolecular structure and function at high or variable (or both) osmolyte concentrations, and, second, greatly reduced needs for modifying proteins to function in concentrated intracellular solutions Osmolyte compatibility is proposed to result from the absence of osmolyte interactions with substrates and cofactors, and the nonperturbing or favorable effects of osmolytes on macromolecular-solvent interactions

3,706 citations

Journal ArticleDOI
TL;DR: A magnetic resonance (MR) method to image intravoxel incoherent motions (IVIMs) by using appropriate gradient pulses and nonuniform slow flow of cerebrospinal fluid appeared as a useful feature on IVIM images.
Abstract: Molecular diffusion and microcirculation in the capillary network result in a distribution of phases in a single voxel in the presence of magnetic field gradients. This distribution produces a spin-echo attenuation. The authors have developed a magnetic resonance (MR) method to image such intravoxel incoherent motions (IVIMs) by using appropriate gradient pulses. Images were generated at 0.5 T in a high-resolution, multisection mode. Diffusion coefficients measured on images of water and acetone phantoms were consistent with published values. Images obtained in the neurologic area from healthy subjects and patients were analyzed in terms of an apparent diffusion coefficient (ADC) incorporating the effect of all IVIMs. Differences were found between various normal and pathologic tissues. The ADC of in vivo water differed from the diffusion coefficient of pure water. Results were assessed in relation to water compartmentation in biologic tissues (restricted diffusion) and tissue perfusion. Nonuniform slow flow of cerebrospinal fluid appeared as a useful feature on IVIM images. Observation of these motions may significantly extend the diagnostic capabilities of MR imaging.

3,679 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied possible motions for one polymer molecule P performing wormlike displacements inside a strongly cross-linked polymeric gel G. The topological requirement that P cannot intersect any of the chains of G is taken into account by a rigorous procedure: the only motions allowed for the chain are associated with the displacement of certain "defects" along the chain.
Abstract: We discuss possible motions for one polymer molecule P (of mass M) performing wormlike displacements inside a strongly cross‐linked polymeric gel G. The topological requirement that P cannot intersect any of the chains of G is taken into account by a rigorous procedure: The only motions allowed for the chain are associated with the displacement of certain “defects” along the chain. The main conclusions derived from this model are the following:(a) There are two characteristic times for the chain motion: One of them (Td) is the equilibration time for the defect concentration, and is proportional to M2. The other time (Tr) is the time required for complete renewal of the chain conformation, and is proportional to M3.(b) The over‐all mobility and diffusion coefficients of the chain P are proportional to M−2.(c) At times t < Tr the mean square displacement of one monomer of P increases only like 〈(rt − r0)2〉 = const t1/4.These results may also turn out to be useful for the (more difficult) problem of entangle...

3,467 citations