scispace - formally typeset
Search or ask a question
Author

Dean Collins

Bio: Dean Collins is an academic researcher from Bureau of Meteorology. The author has contributed to research in topics: Precipitation & Climate change. The author has an hindex of 13, co-authored 14 publications receiving 4792 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed as discussed by the authors, and the results showed widespread significant changes in temperature extremes associated with warming.
Abstract: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.

3,722 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed trends in extreme daily temperature and rainfall from 1961 to 1998 for Southeast Asia and the South Pacific, using high-quality data from 91 stations in 15 countries.
Abstract: Trends in extreme daily temperature and rainfall have been analysed from 1961 to 1998 for Southeast Asia and the South Pacific. This 38-year period was chosen to optimize data availability across the region. Using high-quality data from 91 stations in 15 countries, significant increases were detected in the annual number of hot days and warm nights, with significant decreases in the annual number of cool days and cold nights. These trends in extreme temperatures showed considerable consistency across the region. Extreme rainfall trends were generally less spatially coherent than were those for extreme temperature. The number of rain days (with at least 2 mm of rain) has decreased significantly throughout Southeast Asia and the western and central South Pacific, but increased in the north of French Polynesia, in Fiji, and at some stations in Australia. The proportion of annual rainfall from extreme events has increased at a majority of stations. The frequency of extreme rainfall events has declined at most stations (but not significantly), although significant increases were detected in French Polynesia. Trends in the average intensity of the wettest rainfall events each year were generally weak and not significant. Copyright © 2001 Royal Meteorological Society.

629 citations

Journal ArticleDOI
TL;DR: In this article, spatial and temporal patterns of changes in extreme events of temperature and precipitation at 143 weather stations in ten Asia-Pacific Network (APN) countries and their associations with changes in climate means are examined for the 1955-2007 period.
Abstract: In this study, spatial and temporal patterns of changes in extreme events of temperature and precipitation at 143 weather stations in ten Asia-Pacific Network (APN) countries and their associations with changes in climate means are examined for the 1955–2007 period. Averaged over the APN region, annual frequency of cool nights (days) has decreased by 6.4 days/decade (3.3 days/decade), whereas the frequency of warm nights (days) has increased by 5.4 days/decade (3.9 days/decade). The change rates in the annual frequency of warm nights (days) over the last 20 years (1988–2007) have exceeded those over the full 1955–2007 period by a factor of 1.8 (3.4). Seasonally, the frequencies of summer warm nights and days are changing more rapidly per unit change in mean temperatures than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than that of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperature. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in temperature means in the APN region. There are no systematic, regional trends over the study period in total precipitation, or in the frequency and duration of extreme precipitation events. Statistically significant trends in extreme precipitation events are observed at fewer than 30% of all weather stations, with no spatially coherent pattern of change, whereas statistically significant changes in extreme temperature events have occurred at more than 70% of all weather stations, forming strongly coherent spatial patterns. Copyright © 2009 Royal Meteorological Society

300 citations

Journal Article
TL;DR: This article found that climate change might shift extremes towards conditions that will stress vulnerable systems such as Australia's unique ecosystems, and there is growing evidence that the global changes in extremes that have been observed in recent decades (e.g., Aust. Met. Mag. 56 (2007) 1-18 ).
Abstract: Australia, described in Dorothea Mackellar's 1904 poem My Country as the country of ‘drought and flooding rains’, may be better placed than most to adapt to changes in climate extremes. However, climate change might shift extremes towards conditions that will stress vulnerable systems such as Australia’s unique ecosystems (Pittock et al. 2001). There is growing evidence that the global changes in extremes that have been observed in recent decades (e.g., Aust. Met. Mag. 56 (2007) 1-18

206 citations

Journal ArticleDOI
TL;DR: In this paper, trends in indices of climate extremes are studied for the South Asian region using high-quality records of daily temperature and precipitation observations over the period 1971-2000 (1961-2000).
Abstract: Over the last few decades, weather and climate extremes have become a major focus of researchers, the media and general public due to their damaging effects on human society and infrastructure. Trends in indices of climate extremes are studied for the South Asian region using high-quality records of daily temperature and precipitation observations. Data records from 210 (265) temperature (precipitation) observation stations are analysed over the period 1971-2000 (1961-2000). Spatial maps of station trends, time series of regional averages and frequency distribution analysis form the basis of this study. Due to the highly diverse geography of the South Asian region, the results are also described for some specific regions, such as the island of Sri Lanka; the tropical region (excluding Sri Lanka); the Greater Himalayas above 35°N, the Eastern Himalayas (Nepal) and the Thar Desert. Generally, changes in the frequency of temperature extremes over South Asia are what one would expect in a warming world; warm extremes have become more common and cold extremes less common. The warming influence is greater in the Eastern Himalayas compared with that in the Greater Himalayas. The Thar Desert also shows enhanced warming, but increases are mostly less than in the Eastern Himalayas. Changes in the indices of extreme precipitation are more mixed than those of temperature, with spatially coherent changes evident only at relatively small scales. Nevertheless, most extreme precipitation indices show increases in the South Asia average, consistent with globally averaged results. The indices trends are further studied in the context of Atmospheric Brown Clouds (ABCs) over the region. Countries falling within the ABC hotspot namely Indo-Gangetic Plain (IGP) have shown a different behaviour on the trends of extreme indices compared with the parts outside this hotspot. IGP has increased temperature and decreased rainfall and tally closely with the actual trends.

161 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed as discussed by the authors, and the results showed widespread significant changes in temperature extremes associated with warming.
Abstract: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.

3,722 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations

Journal ArticleDOI
TL;DR: There is a direct influence of global warming on precipitation as mentioned in this paper, as the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere.
Abstract: There is a direct influence of global warming on precipitation. Increased heating leads to greater evaporation and thus surface drying, thereby increasing the intensity and duration of drought. However, the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere. Hence, storms, whether individual thunderstorms, extratropical rain or snow storms, or tropical cyclones, supplied with increased moisture, produce more intense precipitation events. Such events are observed to be widely occurring, even where total precipitation is decreasing: 'it never rains but it pours!' This increases the risk of flooding. The atmo- spheric and surface energy budget plays a critical role in the hydrological cycle, and also in the slower rate of change that occurs in total precipitation than total column water vapor. With modest changes in winds, patterns of precipitation do not change much, but result in dry areas becoming drier (generally throughout the subtropics) and wet areas becoming wetter, especially in the mid- to high latitudes: the 'rich get richer and the poor get poorer'. This pattern is simulated by climate mod- els and is projected to continue into the future. Because, with warming, more precipitation occurs as rain instead of snow and snow melts earlier, there is increased runoff and risk of flooding in early spring, but increased risk of drought in summer, especially over continental areas. However, with more precipitation per unit of upward motion in the atmosphere, i.e. 'more bang for the buck', atmo- spheric circulation weakens, causing monsoons to falter. In the tropics and subtropics, precipitation patterns are dominated by shifts as sea surface temperatures change, with El Nino a good example. The volcanic eruption of Mount Pinatubo in 1991 led to an unprecedented drop in land precipitation and runoff, and to widespread drought, as precipitation shifted from land to oceans and evaporation faltered, providing lessons for possible geoengineering. Most models simulate precipitation that occurs prematurely and too often, and with insufficient intensity, resulting in recycling that is too large and a lifetime of moisture in the atmosphere that is too short, which affects runoff and soil moisture.

2,525 citations

Book Chapter
01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986-2005, unless otherwise stated.

2,253 citations