scispace - formally typeset
Search or ask a question
Author

Dean F. Wong

Bio: Dean F. Wong is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Dopamine & Dopamine receptor. The author has an hindex of 62, co-authored 312 publications receiving 12335 citations. Previous affiliations of Dean F. Wong include Otsuka Pharmaceutical & Washington University in St. Louis.


Papers
More filters
Journal ArticleDOI
TL;DR: 18F-AV-45 was well tolerated, and PET showed significant discrimination between AD patients and HCs, using either a parametric reference region method (DVR) or a simplified SUVR calculated from 10 min of scanning 50–60 min after 18F- AV-45 administration.
Abstract: An 18F-labeled PET amyloid-β (Aβ) imaging agent could facilitate the clinical evaluation of late-life cognitive impairment by providing an objective measure for Alzheimer disease (AD) pathology. Here we present the results of a clinical trial with (E)-4-(2-(6-(2-(2-(2-18F-fluoroethoxy)ethoxy)ethoxy)pyridin-3-yl)vinyl)-N-methyl benzenamine (18F-AV-45 or flobetapir F 18). Methods: An open-label, multicenter brain imaging, metabolism, and safety study of 18F-AV-45 was performed on 16 patients with AD (Mini-Mental State Examination score, 19.3 ± 3.1; mean age ± SD, 75.8 ± 9.2 y) and 16 cognitively healthy controls (HCs) (Mini-Mental State Examination score, 29.8 ± 0.45; mean age ± SD, 72.5 ± 11.6 y). Dynamic PET was performed over a period of approximately 90 min after injection of the tracer (370 MBq [10 mCi]). Standardized uptake values and cortical-to-cerebellum standardized uptake value ratios (SUVRs) were calculated. A simplified reference tissue method was used to generate distribution volume ratio (DVR) parametric maps for a subset of subjects. Results: Valid PET data were available for 11 AD patients and 15 HCs. 18F-AV-45 accumulated in cortical regions expected to be high in Aβ deposition (e.g., precuneus and frontal and temporal cortices) in AD patients; minimal accumulation of the tracer was seen in cortical regions of HCs. The cortical-to-cerebellar SUVRs in AD patients showed continual substantial increases through 30 min after administration, reaching a plateau within 50 min. The 10-min period from 50 to 60 min after administration was taken as a representative sample for further analysis. The cortical average SUVR for this period was 1.67 ± 0.175 for patients with AD versus 1.25 ± 0.177 for HCs. Spatially normalized DVRs generated from PET dynamic scans were highly correlated with SUVR (r = 0.58–0.88, P

617 citations

Journal ArticleDOI
TL;DR: An increase of the rate of metabolism of an exogenous dopa tracer in the neostriatum of a subgroup of patients with a history of psychosis is discovered, consistent with the theory that a state of psychosis arises when episodic dopamine excess is superimposed on a trait of basic dopamine deficiency in the striatum.
Abstract: The hypofrontality theory of the pathogenesis of schizophrenia predicts that cortical lesions cause psychosis. During a search for abnormalities of catecholaminergic neurotransmission in patients with complex partial seizures of the mesial temporal lobe, we discovered an increase of the rate of metabolism of an exogenous dopa tracer (6-[18F]fluoro-L-dopa) in the neostriatum of a subgroup of patients with a history of psychosis. When specifically assayed for this abnormality, patients with schizophrenia revealed the same significant increase of the rate of metabolism in the striatum. The finding is consistent with the theory that a state of psychosis arises when episodic dopamine excess is superimposed on a trait of basic dopamine deficiency in the striatum. The finding is explained by the hypothesis that cortical insufficiency, a proposed pathogenetic mechanism of both disorders, causes an up-regulation of the enzymes responsible for dopa turnover in the neostriatum as well as the receptors mediating dopaminergic neurotransmission.

328 citations

Journal ArticleDOI
TL;DR: Interestingly, even at striatal D2 receptor occupancy values above 90%, which occurred with the higher doses, extrapyramidal side effects were not observed, which underlines aripiprazole's unique mechanism of action as a partial dopamine receptor agonist, which might become a novel principle in the treatment of schizophrenia.

273 citations

Journal ArticleDOI
TL;DR: This paper summarizes a conference held at the National Institute of Child Health and Human Development on December 6-7, 1999, on self-injurious behavior in developmental disabilities, where findings over the last decade, especially new discoveries since 1995, were emphasized.
Abstract: This paper summarizes a conference held at the National Institute of Child Health and Human Development on December 6-7, 1999, on self-injurious behavior [SIB] in developmental disabilities. Twenty-six of the top researchers in the U.S. from this field representing 13 different disciplines discussed environmental mechanisms, epidemiology, behavioral and pharmacological intervention strategies, neurochemical substrates, genetic syndromes in which SIB is a prominent behavioral phenotype, neurobiological and neurodevelopmental factors affecting SIB in humans as well as a variety of animal models of SIB. Findings over the last decade, especially new discoveries since 1995, were emphasized. SIB is a rapidly growing area of scientific interest to both basic and applied researchers. In many respects it is a model for the study of gene-brain-behavior relationships in developmental disabilities.

222 citations

Journal ArticleDOI
TL;DR: These findings provide the first in vivo documentation of a dopaminergic reduction in LND and illustrate the role of positron emission tomography imaging in investigating neurodevelopmental disorders.
Abstract: Dopamine (DA) deficiency has been implicated in Lesch-Nyhan disease (LND), a genetic disorder that is characterized by hyperuricemia, choreoathetosis, dystonia, and compulsive self-injury. To establish that DA deficiency is present in LND, the ligand WIN-35,428, which binds to DA transporters, was used to estimate the density of DA-containing neurons in the caudate and putamen of six patients with classic LND. Comparisons were made with 10 control subjects and 3 patients with Rett syndrome. Three methods were used to quantify the binding of the DA transporter so that its density could be estimated by a single dynamic positron emission tomography study. These approaches included the caudate- or putamen-to-cerebellum ratio of ligand at 80-90 min postinjection, kinetic analysis of the binding potential [Bmax/(Kd x Vd)] using the assumption of equal partition coefficients in the striatum and the cerebellum, and graphical analysis of the binding potential. Depending on the method of analysis, a 50-63% reduction of the binding to DA transporters in the caudate, and a 64-75% reduction in the putamen of the LND patients was observed compared to the normal control group. When LND patients were compared to Rett syndrome patients, similar reductions were found in the caudate (53-61%) and putamen (67-72%) in LND patients. Transporter binding in Rett syndrome patients was not significantly different from the normal controls. Finally, volumetric magnetic resonance imaging studies detected a 30% reduction in the caudate volume of LND patients. To ensure that a reduction in the caudate volume would not confound the results, a rigorous partial volume correction of the caudate time activity curve was performed. This correction resulted in an even greater decrease in the caudate-cerebellar ratio in LND patients when contrasted to controls. To our knowledge, these findings provide the first in vivo documentation of a dopaminergic reduction in LND and illustrate the role of positron emission tomography imaging in investigating neurodevelopmental disorders.

221 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This research framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms and envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD.
Abstract: In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a "research framework" because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.

5,126 citations

Journal ArticleDOI
TL;DR: In this article, a model of the major biomarkers of Alzheimer's disease (AD) was proposed and the authors described the temporal evolution of AD biomarkers in relation to each other and to the onset and progression of clinical symptoms.
Abstract: Summary In 2010, we put forward a hypothetical model of the major biomarkers of Alzheimer's disease (AD). The model was received with interest because we described the temporal evolution of AD biomarkers in relation to each other and to the onset and progression of clinical symptoms. Since then, evidence has accumulated that supports the major assumptions of this model. Evidence has also appeared that challenges some of our assumptions, which has allowed us to modify our original model. Refinements to our model include indexing of individuals by time rather than clinical symptom severity; incorporation of interindividual variability in cognitive impairment associated with progression of AD pathophysiology; modifications of the specific temporal ordering of some biomarkers; and recognition that the two major proteinopathies underlying AD biomarker changes, amyloid β (Aβ) and tau, might be initiated independently in sporadic AD, in which we hypothesise that an incident Aβ pathophysiology can accelerate antecedent limbic and brainstem tauopathy.

3,197 citations

Journal ArticleDOI
TL;DR: It is proposed that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease.
Abstract: In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.

2,581 citations

Journal ArticleDOI
TL;DR: An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed, and results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervalued of alternative rein forcers, and deficits in inhibitory control for drug responses.
Abstract: OBJECTIVE: Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. METHOD: An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. RESULTS: The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to tr...

2,415 citations