scispace - formally typeset
Search or ask a question
Author

Deanna Marie Pennington

Bio: Deanna Marie Pennington is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Laser & Inertial confinement fusion. The author has an hindex of 29, co-authored 92 publications receiving 7769 citations. Previous affiliations of Deanna Marie Pennington include University of California, Santa Cruz & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: An intense collimated beam of high-energy protons is emitted normal to the rear surface of thin solid targets irradiated at 1 PW power and peak intensity 3x10(20) W cm(-2).
Abstract: An intense collimated beam of high-energy protons is emitted normal to the rear surface of thin solid targets irradiated at 1 PW power and peak intensity 3x10(20) W cm(-2). Up to 48 J ( 12%) of the laser energy is transferred to 2x10(13) protons of energy >10 MeV. The energy spectrum exhibits a sharp high-energy cutoff as high as 58 MeV on the axis of the beam which decreases in energy with increasing off axis angle. Proton induced nuclear processes have been observed and used to characterize the beam.

1,496 citations

Journal ArticleDOI
TL;DR: In this paper, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment.
Abstract: An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 1020 W/cm2, high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors.

1,485 citations

Journal ArticleDOI
TL;DR: An intense proton beam to achieve fast ignition is proposed, produced by direct laser acceleration and focused onto the pellet from the rear side of an irradiated target and can be integrated into a hohlraum for indirect drive ICF.
Abstract: The concept of fast ignition with inertial confinement fusion (ICF) is a way to reduce the energy required for ignition and burn and to maximize the gain produced by a single implosion. Based on recent experimental findings at the PETAWATT laser at Lawrence Livermore National Laboratory, an intense proton beam to achieve fast ignition is proposed. It is produced by direct laser acceleration and focused onto the pellet from the rear side of an irradiated target and can be integrated into a hohlraum for indirect drive ICF.

1,171 citations

Journal ArticleDOI
TL;DR: In this paper, the energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques.
Abstract: In recent Petawatt laser experiments at Lawrence Livermore National Laboratory, several hundred joules of 1 μm laser light in 0.5–5.0-ps pulses with intensities up to 3×1020 W cm−2 were incident on solid targets and produced a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. About 40%–50% of the laser energy is converted to broadly beamed hot electrons. Their beam centroid direction varies from shot to shot, but the resulting bremsstrahlung beam has a consistent width. Extraordinarily luminous ion beams (primarily protons) almost precisely normal to the rear of various targets are seen—up to 3×1013 protons with kTion∼several MeV representing ∼6% of the laser energy. Ion energies up to at least 55 MeV are observed. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very shar...

868 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the conceptual approach and technical implementation followed for this system, including lessons learned, and provide an overview of the early science capabilities of the adaptive optics system.
Abstract: The Keck Observatory began science observations with a laser guide star adaptive optics system, the first such system on an 8-10 m class telescope, in late 2004. This new capability greatly extends the scientific potential of the Keck II Telescope, allowing near-diffraction-limited observations in the near-infrared using natural guide stars as faint as 19th magnitude. This paper describes the conceptual approach and technical implementation followed for this system, including lessons learned, and provides an overview of the early science capabilities.

502 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to fusion that relies on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion is presented.
Abstract: Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

2,121 citations

Journal ArticleDOI
TL;DR: In this article, Advanced Camera for Surveys, NICMOS and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey was presented.
Abstract: We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

1,784 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: High-resolution energy measurements of the electron beams produced from intense laser–plasma interactions are reported, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread.
Abstract: High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

1,739 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported new precision measurements of the properties of our Galaxy's supermassive black hole, based on astrometric and radial velocity (RV; 2000-2007) measurements from the W. M. Keck 10m telescopes.
Abstract: We report new precision measurements of the properties of our Galaxy's supermassive black hole. Based on astrometric (1995-2007) and radial velocity (RV; 2000-2007) measurements from the W. M. Keck 10m telescopes, a fully unconstrained Keplerian orbit for the short-period star S0-2 provides values for the distance (R_0) of 8.0±0.6 kpc, the enclosed mass (M_(bh)) of 4.1±0.6x10^6 M☉ and the black hole's RV, which is consistent with zero with 30 km/s uncertainty. If the black hole is assumed to be at rest with respect to the Galaxy (e. g., has no massive companion to induce motion), we can further constrain the fit, obtaining R_0 = 8.4±0.4kpc and M_(bh) 4.5±0.4x10^6 M☉. More complex models constrain the extended dark mass distribution to be less than 3-4x10^5 M☉ within 0.01 pc, ~100 times higher than predictions from stellar and stellar remnant models. For all models, we identify transient astrometric shifts from source confusion (up to 5 times the astrometric error) and the assumptions regarding the black hole's radial motion as previously unrecognized limitations on orbital accuracy and the usefulness of fainter stars. Future astrometric and RV observations will remedy these effects. Our estimates of R_0 and the Galaxy's local rotation speed, which it is derived from combining R_0 with the apparent proper motion of Sgr A*, (θ_0 = 229±18 km/s), are compatible with measurements made using other methods. The increased black hole mass found in this study, compared to that determined using projected mass estimators, implies a longer period for the innermost stable orbit, longer resonant relaxation timescales for stars in the vicinity of the black hole and a better agreement with the M_(bh)-σ relation.

1,677 citations