scispace - formally typeset
Search or ask a question
Author

Debajyoti Goswami

Bio: Debajyoti Goswami is an academic researcher from University of Calcutta. The author has contributed to research in topics: Lipase & Castor oil. The author has an hindex of 7, co-authored 12 publications receiving 226 citations. Previous affiliations of Debajyoti Goswami include Indian Institute of Technology Kharagpur.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a single variable optimization method is used to obtain optimum conditions for a lipid-catalyzed process of vegetable oil hydrolysis, where the presence of metal ions has different effects on the activity of different lipases and the effects of additives on the same lipase vary with their types.
Abstract: Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

102 citations

Journal ArticleDOI
TL;DR: This is the first report on the application of response surface methodology for optimizing surfactant enhanced ricinoleic acid production using C. rugosa lipase and the most important variable was pH, whereas enzyme and buffer concentrations also showed pronounced effect on response.

42 citations

Journal ArticleDOI
TL;DR: This is the first report on the application of response surface methodology in castor oil hydrolysis using C. rugosa lipase with higher percentage conversion in 6 h.

34 citations

Journal ArticleDOI
TL;DR: In this paper, castor oil is hydrolyzed in presence of Candida rugosa lipase, while in the buffer (aqueous) phase as a dispersion medium.
Abstract: In this study, castor oil is hydrolyzed in presence of Candida rugosa lipase, while in the buffer (aqueous) phase as a dispersion medium. The following conditions were used to optimize the process: speed of agitation, initial pH of buffer phase, temperature, and ratio of buffer phase volume to oil weight. The optimal conditions are 1,100 rpm, pH 6.5, temperature 35°C, and 3:1 buffer phase volume to oil weight ratio. Under these described conditions, the reusability of lipase was tested and it was found that nearly 80% of original hydrolysis percentage was achieved after the first recycle.

31 citations

Journal ArticleDOI
TL;DR: In this article, the effect of speed of agitation, pH of the buffer phase, temperature, buffer-oil ratio and enzyme concentration on hydrolysis of brown mustard oil with regioselective porcine pancreas lipase was studied.
Abstract: Selective hydrolysis of brown mustard oil (from Brassica juncea) with regioselective porcine pancreas lipase was studied in this work. Buffer and oil phase were considered as the continuous and dispersed phases, respectively. Effects of speed of agitation, pH of the buffer phase, temperature, buffer-oil ratio and enzyme concentration on hydrolysis were observed. The best combination of process variables was: 900 rpm, pH 9, 35 oC, buffer-oil ratio of 1:1 and enzyme concentration of 10 mg/g oil. These standard conditions led to 50% hydrolysis and selective production of 55% erucic acid in 6 h. Cations like Mg2+ and Ca2+ increased hydrolysis, but Cu2+ strongly inhibited it. Organic solvents decreased hydrolysis, though the decrease was minimum for isooctane. A mixed surfactant comprising of Span 80 and Tween 80 increased erucic acid production by 57% at a buffer-oil ratio of 0.2:1.

20 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal ArticleDOI
TL;DR: Bacterial lipases have been extensively studied during last decade, however, their wider applications demand a detailed review on purification, catalytic characterization and applications of lipases.
Abstract: Lipase (E.C.3.1.1.3) belongs to the hydrolases and is also known as fat splitting, glycerol ester hydrolase or triacylglycerol acylhydrolase. Lipase catalyzes the hydrolysis of triglycerides converting them to glycerol and fatty acids in an oil-water interface. These are widely used in food, dairy, flavor, pharmaceuticals, biofuels, leather, cosmetics, detergent, and chemical industries. Lipases are of plant, animal, and microbial origin, but microbial lipases are produced at industrial level and represent the most widely used class of enzymes in biotechnological applications and organic chemistry. Phylogenetic analysis and comparison of residues around GxSxG motif provided an insight to the diversity among bacterial lipases. A variety of para-Nitrophenyl (p-NP) esters having C2 to C16 (p-NP acetate to p-NP palmitate) in their fatty acid side chain can be hydrolyzed by bacterial lipases. Large heterogeneity has been observed in molecular and catalytic characteristics of lipases including molecular mass; 19–96 kDa, Km; 0.0064–16.58 mM, Kcat; 0.1665–1.0 × 104 s−1 and Kcat/Km; 26.02–7377 s-1/mM. Optimal conditions of their working temperature and pH have been stated 15–70 °C and 5.0–10.8, respectively and are strongly associated with the type and growth conditions of bacteria. Surface hydrophobicity, enzyme activity, stability in organic solvents and at high temperature, proteolytic resistance and substrate tolerance are the properties of bacterial lipases that have been improved by engineering. Bacterial lipases have been extensively studied during last decade. However, their wider applications demand a detailed review on purification, catalytic characterization and applications of lipases.

197 citations