scispace - formally typeset
Search or ask a question
Author

Debarun Dutta

Bio: Debarun Dutta is an academic researcher from Aston University. The author has contributed to research in topics: Contact lens & Antimicrobial peptides. The author has an hindex of 18, co-authored 51 publications receiving 879 citations. Previous affiliations of Debarun Dutta include Vision-Sciences, Inc. & Lloyd's Register.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The major anti-biofilm mechanisms of antimicrobial peptides are: disruption or degradation of the membrane potential of biofilm embedded cells; interruption of bacterial cell signaling systems; and downregulation of genes responsible for biofilm formation and transportation of binding proteins.
Abstract: Microbes are known to colonize surfaces and form biofilms. These biofilms are communities of microbes encased in a self-produced matrix that often contains polysaccharides, DNA and proteins. Antimicrobial peptides (AMPs) have been used to control the formation and to eradicate mature biofilms. Naturally occurring or synthetic antimicrobial peptides have been shown to prevent microbial colonization of surfaces, to kill bacteria in biofilms and to disrupt the biofilm structure. This review systemically analyzed published data since 1970 to summarize the possible anti-biofilm mechanisms of AMPs. One hundred and sixty-two published reports were initially selected for this review following searches using the criteria ‘antimicrobial peptide’ OR ‘peptide’ AND ‘mechanism of action’ AND ‘biofilm’ OR ‘antibiofilm’ in the databases PubMed; Scopus; Web of Science; MEDLINE; and Cochrane Library. Studies that investigated anti-biofilm activities without describing the possible mechanisms were removed from the analysis. A total of 17 original reports were included which have articulated the mechanism of antimicrobial action of AMPs against biofilms. The major anti-biofilm mechanisms of antimicrobial peptides are: (1) disruption or degradation of the membrane potential of biofilm embedded cells; (2) interruption of bacterial cell signaling systems; (3) degradation of the polysaccharide and biofilm matrix; (4) inhibition of the alarmone system to avoid the bacterial stringent response; (5) downregulation of genes responsible for biofilm formation and transportation of binding proteins.

145 citations

Journal ArticleDOI
TL;DR: A new bidentate phosphoramidite (N-Me-BIPAM) based on Shibasaki’s N-linked BINOL was synthesized and appears to be highly effective for rhodium-catalyzed asymmetric conjugated addition of arylboronic acids to α,β-unsaturated enones.
Abstract: The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

100 citations

Journal ArticleDOI
TL;DR: Melimine may offer excellent potential for development as a broad spectrum antimicrobial coating for contact lenses, showing activity against all the bacterial and fungal ISO panel microorganisms, Acanthamoeba, and antibiotic resistant strains of P. aeruginosa and S. aureus.
Abstract: PURPOSE. To develop a stable antimicrobial contact lens, which is effective against the International Organization for Standardization (ISO) panel microorganisms, Acanthamoeba castellanii and drug resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. METHODS. Melimine was covalently incorporated into etafilcon A lenses. The amount of peptide present on the lens surface was quantified using amino acid analysis. After coating, the heat stability (121°C), lens surface hydrophobicity (by captive bubble), and in vitro cytotoxicity to mouse L929 cells of the lenses were investigated. Antimicrobial activity against the micro-organisms was evaluated by viable plate count and fluorescence microscopy, measuring the proportion of cell death compared with control lenses with no melimine. RESULTS. The most effective concentration was determined to be 152 ± 44 lg lens-1 melimine on the lens surface. After coating, lenses were relatively hydrophilic and were nontoxic to mammalian cells. The activity remained high after autoclaving (e.g., 3.1, 3.9, 1.2, and 1.0 log inhibition against P. aeruginosa, S. aureus, A. castellanii, and Fusarium solani, respectively). Fluorescence microscopy confirmed significantly reduced (P < 0.001) adhesion of viable bacteria to melimine contact lenses. Viable count confirmed that lenses were active against all the bacteria and fungi from the ISO panel, Acanthamoeba and gave at least 2 log inhibition against all the multidrug resistant S. aureus and P. aeruginosa strains. CONCLUSIONS. Melimine may offer excellent potential for development as a broad spectrum antimicrobial coating for contact lenses, showing activity against all the bacterial and fungal ISO panel microorganisms, Acanthamoeba, and antibiotic resistant strains of P. aeruginosa and S. aureus.

82 citations

Journal ArticleDOI
TL;DR: Overall, melimine showed higher capacity for membrane disruption compared to Mel4, suggesting that the peptides permeabilized P. aeruginosa within 5 minutes, started lysis within 2 hours of exposure.
Abstract: Melimine and Mel4 are chimeric cationic peptides with broad-spectrum antimicrobial activity. They have been shown to be highly biocompatible in animal models and human clinical trials. The current study examined the mechanism of action of these two antimicrobial peptides against P. aeruginosa. The effect of the peptides of endotoxin neutralization, and their interactions with cytoplasmic membranes using DiSC(3)-5 and Sytox green, Syto-9 and PI dyes were analysed. Release of ATP and DNA/RNA were determined using ATP luminescence and increase in OD260 nm. The bacteriolytic ability of the peptides was determined by measuring decreases in OD620 nm. Both the peptides neutralized LPS suggesting their interaction with lipid A. Cytoplasmic membrane was disrupted within 30 seconds, which correlated with reductions in cellular viability. At 2 minutes melimine or Mel4, released 75% and 36% cellular ATP respectively (P < 0.001). Membrane permeabilization started 5 minutes with simultaneous release of DNA/RNA. Flow cytometry demonstrated 52% and 18% bacteria were stained with PI after 30 minutes. Overall, melimine showed higher capacity for membrane disruption compared to Mel4 (P < 0.001). The findings of this study have been summarized as a timeline of bactericidal activity, suggesting that the peptides permeabilized P. aeruginosa within 5 minutes, started lysis within 2 hours of exposure.

66 citations

Journal ArticleDOI
TL;DR: The immobilisation of certain AMPs at nanomolar concentration to pHEMA is an effective option to develop a stable antimicrobial surface and shows any toxicity towards mouse L929 cells.
Abstract: The objective of this study was to immobilise and characterise a variety of antimicrobial peptides (AMPs) onto poly-hydroxyethylmethacrylate (pHEMA) surfaces to achieve an antibacterial effect. Four AMPs, viz. LL-37, melimine, lactoferricin and Mel-4 were immobilised on pHEMA by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) which assisted covalent attachment. Increasing concentrations of AMPs were immobilised to determine the effect on the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus. The AMP immobilised pHEMAs were characterised by X-ray photoelectron spectroscopy (XPS) to determine the surface elemental composition and by amino acid analysis to determine the total amount of AMP attached. In vitro cytotoxicity of the immobilised pHEMA samples to mouse L929 cells was investigated. Melimine and Mel-4 when immobilised at the highest concentrations showed 3.1 ± 0.6 log and 1.3 ± 0.2 log inhibition against P. aeruginosa, and 3.9 ± 0.6 log and 2.4 ± 0.5 log inhibiti...

63 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is concluded that molecular typing of coagulase-negative staphylococci from blood cultures does not correlate with clinical criteria for true bacteremia, suggesting either that true bactseremias are frequently the result of multiple strains or that the commonly used clinical criteria are not accurate for distinguishing contamination from true b acteremia.
Abstract: of antibiotics, whether there was an explicit note in the medical chart in which the physician diagnosed a true bacteremia, and the Centers for Disease Control surveillance criteria for primary bloodstream infection. Agreement between same-strain bacteremia and each definition was examined, based on the assumption that most true infections should be the result of a single strain. The study sample consisted of 42 patients and 106 isolates. Nineteen of the 42 bacteremias (45%) were the same strain. Classification of bacteremias as same-strain correlated poorly with all three clinical assessments (range of percentage agreement, 50%-57%; range of kappa statistic, 0.01-0.15). There were both false-positive and false-negative errors. Patients with three or more positive blood cultures were more likely to have same-strain bacteremia than those with only two positive cultures (11/15 [73%] vs 8/27 [30%], P=.006). Pulsed-field gel electrophoresis was more discriminating than AP PCR (percentage agreement, 83%; kappa, 0.67). The authors concluded that molecular typing correlated poorly with clinical criteria for true bacteremia, suggesting either that true bacteremias are frequently the result of multiple strains or that the commonly used clinical criteria are not accurate for distinguishing contamination from true bacteremia. Vancomycin treatment of clinically defined coagulase-negative staphylococcal bacteremia may frequently be unnecessary. FROM: Seo SK, Venkataraman L, DeGirolami PC, Samore MH. Molecular typing of coagulase-negative staphylococci from blood cultures does not correlate with clinical criteria for true bacteremia. Am J Med 2000;109:697-704.

1,073 citations

Journal ArticleDOI
TL;DR: The objective of this review is to describe the alternative therapies reported to treat ESKAPE infections, their advantages and limitations, potential application in vivo, and status in clinical trials.
Abstract: The acronym ESKAPE includes six nosocomial pathogens that exhibit multidrug resistance and virulence: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. Persistent use of antibiotics has provoked the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) bacteria, which render even the most effective drugs ineffective. Extended spectrum β-lactamase (ESBL) and carbapenemase producing Gram negative bacteria have emerged as an important therapeutic challenge. Development of novel therapeutics to treat drug resistant infections, especially those caused by ESKAPE pathogens is the need of the hour. Alternative therapies such as use of antibiotics in combination or with adjuvants, bacteriophages, antimicrobial peptides, nanoparticles, and photodynamic light therapy are widely reported. Many reviews published till date describe these therapies with respect to the various agents used, their dosage details and mechanism of action against MDR pathogens but very few have focused specifically on ESKAPE. The objective of this review is to describe the alternative therapies reported to treat ESKAPE infections, their advantages and limitations, potential application in vivo, and status in clinical trials. The review further highlights the importance of a combinatorial approach, wherein two or more therapies are used in combination in order to overcome their individual limitations, additional studies on which are warranted, before translating them into clinical practice. These advances could possibly give an alternate solution or extend the lifetime of current antimicrobials.

749 citations

Journal ArticleDOI
TL;DR: The emerging potential to therapeutically harness cationic host defence peptides to treat infectious diseases, chronic inflammatory disorders and wound healing is assessed, highlighting current preclinical studies and clinical trials.
Abstract: Cationic host defence peptides (CHDP), also known as antimicrobial peptides, are naturally occurring peptides that can combat infections through their direct microbicidal properties and/or by influencing the host's immune responses. The unique ability of CHDP to control infections as well as resolve harmful inflammation has generated interest in harnessing the properties of these peptides to develop new therapies for infectious diseases, chronic inflammatory disorders and wound healing. Various strategies have been used to design synthetic optimized peptides, with negligible toxicity. Here, we focus on the progress made in understanding the scope of functions of CHDP and the emerging potential clinical applications of CHDP-based therapies.

617 citations

Journal ArticleDOI
TL;DR: The diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials.

281 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2248 moreInstitutions (155)
TL;DR: For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.
Abstract: New sets of CMS underlying-event parameters (“tunes”) are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell–Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.

265 citations