scispace - formally typeset
Search or ask a question
Author

Debasis Mukhopadhyay

Bio: Debasis Mukhopadhyay is an academic researcher from University of Calcutta. The author has contributed to research in topics: Diabatic & Coupled cluster. The author has an hindex of 15, co-authored 43 publications receiving 791 citations. Previous affiliations of Debasis Mukhopadhyay include Indian Association for the Cultivation of Science & Princeton University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that both the main and the satellite peaks from UCC-LRT for the one valence problems are core-valence extensive owing to the hermitized nature of the underlying operator to be diagonalized, and hence the energy differences are fully extensive.
Abstract: In this paper we have discussed in detail the aspects of separability of the energy differences obtained from coupled cluster based “direct” methods such as the open-shell Coupled Cluster (CC) theory and the Coupled Cluster based Linear Response Theory (CC-LRT). It has been emphasized that, unlike the state energiesper se, the energy differences have a semi-local character in that, in the asymptotic limit of non-interacting subsystemsA, B, C, etc., they are separable as ΔE A , ΔE B , ΔE A + ΔE B , etc. depending on the subsystems excited. We classify the direct many-body methods into two categories: core-extensive and core-valence extensive. In the former, we only implicitly subtract the ground state energy computed in a size-extensive manner; the energy differences are not chosen to be valence-extensive (separable) in the semi-local sense. The core-valence extensive theories, on the other hand, are fully extensive — i.e., with respect to both core and valence interactions, and hence display the semi-local separability. Generic structures of the wave-operators for core-extensive and core-valence extensive theories are discussed. CC-LRT is shown to be core-extensive after a transcription to an equivalent wave-operator based form. The emergence of valence disconnected diagrams for two and higher valence problems are indicated. The open-shell CC theory is shown to be core-valence extensive and hence fully connected. For one valence problems, the CC theory and the CC-LRT are shown to be equivalent. The equations for the cluster amplitudes in the Bloch equation are quadratic, admitting of multiple solutions. It is shown that the cluster amplitudes for the main peaks, in principle obtainable as a series inV from the zeroth order roots of the model space, are connected, and hence the energy differences are fully extensive. It is remarkable that the satellite energies obtained from the alternative solutions of the CC equations are not valence-extensive, indicating the necessity of a formal power series structure inV of the cluster amplitudes for the valence-extensivity. The alternative solutions are not obtainable as a power series inV. The CC-LRT is shown to have an effective hamiltonian structure respecting “downward reducibility”. A unitary version of CC-LRT (UCC-LRT) is proposed, which satisfy both upward and downward reducibility. UCC-LRT is shown to lead to the recent propagator theory known as the Algebraic Diagrammatic Construction. It is shown that both the main and the satellite peaks from UCC-LRT for the one valence problems are core-valence extensive owing to the hermitized nature of the underlying operator to be diagonalized.

100 citations

Journal ArticleDOI
TL;DR: In this article, a size-extensive formulation for an intermediate Hamiltonian H int, furnishing sizeextensive energies for the main roots, is presented, and the working model space, comprised of the main and intermediate space, is taken as complete.

84 citations

Journal ArticleDOI
TL;DR: In this article, the eigenvalue-independent partitioning (EIP) approach for the calculation of open-shell coupled cluster (CC) energy differences was used to compute the ionization potentials of HF and H 2 O using basis sets with and without polarization functions.

74 citations

Journal ArticleDOI
TL;DR: In this paper, an open-shell coupled cluster (CC) theory is developed using an incomplete model space (IMS) that works entirely within one particular n-valence Hilbert space sector.

72 citations

Journal ArticleDOI
TL;DR: The beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs.
Abstract: We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non-Adiabatic Coupling Terms (NACTs) for the three lowest singlet states of H3 (+) in hyperspherical coordinates as functions of hyperangles (θ and ϕ) for a grid of fixed values of hyperradius (1.5 ⩽ ρ ⩽ 20 bohrs) using the MRCI level of methodology employing ab initio quantum chemistry package (MOLPRO). The NACT between the ground and the first excited state translates along the seams on the θ - ϕ space, i.e., there are six Conical Intersections (CIs) at each θ (60° ⩽ θ ⩽ 90°) within the domain, 0 ⩽ ϕ ⩽ 2π. While transforming the adiabatic PESs to the diabatic ones, such surfaces show up six crossings along those seams. Our beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs. Since the location of CIs and the spatial amplitudes of NACTs are most prominent around ρ = 10 bohrs, generally only those results are depicted.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the essential aspects of coupled-cluster theory are explained and illustrated with informative numerical results, showing that the theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules.
Abstract: Today, coupled-cluster theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules. Though it was originally proposed for problems in physics, it has seen its greatest development in chemistry, enabling an extensive range of applications to molecular structure, excited states, properties, and all kinds of spectroscopy. In this review, the essential aspects of the theory are explained and illustrated with informative numerical results.

2,667 citations

Journal ArticleDOI
TL;DR: A generally useful method for obtaining electronic and vibrational Stark spectra that does not require sophisticated equipment is described and applications to donor-acceptor polyenes, transition metal complexes, and nonphotosynthetic biological systems are reviewed.
Abstract: Stark spectroscopy has been applied to a wide range of molecular systems and materials. A generally useful method for obtaining electronic and vibrational Stark spectra that does not require sophisticated equipment is described. By working with frozen glasses it is possible to study nearly any molecular system, including ions and proteins. Quantitative analysis of the spectra provides information on the change in dipole moment and polarizability associated with a transition. The change in dipole moment reflects the degree of charge separation for a transition, a quantity of interest to a variety of fields. The polarizability change describes the sensitivity of a transition to an electrostatic field such as that found in a protein or an ordered synthetic material. Applications to donor-acceptor polyenes, transition metal complexes (metal-to-ligand and metal-to-metal mixed valence transitions), and nonphotosynthetic biological systems are reviewed.

560 citations

Journal ArticleDOI
TL;DR: The theory for analytic energy derivatives of excited electronic states described by the equation-of-motion coupled cluster (EOM•CC) method has been generalized to treat cases in which reference and final states differ in the number of electrons as discussed by the authors.
Abstract: The theory for analytic energy derivatives of excited electronic states described by the equation‐of‐motion coupled cluster (EOM‐CC) method has been generalized to treat cases in which reference and final states differ in the number of electrons. While this work specializes to the sector of Fock space that corresponds to ionization of the reference, the approach can be trivially modified for electron attached final states. Unlike traditional coupled cluster methods that are based on single determinant reference functions, several electronic configurations are treated in a balanced way by EOM‐CC. Therefore, this quantum chemical approach is appropriate for problems that involve important nondynamic electron correlation effects. Furthermore, a fully spin adapted treatment of doublet electronic states is guaranteed when a spin restricted closed shell reference state is used—a desirable feature that is not easily achieved in standard coupled cluster approaches. The efficient implementation of analytic gradien...

532 citations

Journal ArticleDOI
TL;DR: Conjugated polymers are primary candidates for new organic optical materials with large nonlinear polarizabilities and potential applications include electroluminescence, light emitting diodes, ultrafast switches, photodetectors, biosensors, and optical limiting materials.
Abstract: Predicting the electronic structure of extended organic molecules constitutes an important fundamental task of modern chemistry. Studies of electronic excitations, charge-transfer, energy-transfer, and isomerization of conjugated systems form the basis for our understanding of the photophysics and photochemistry of complex molecules1-3 as well as organic nanostructures and supramolecular assemblies.4,5 Photosynthesis and other photochemical biological processes that constitute the basis of life on Earth involve assemblies of conjugated chromophores such as porphyrins, chlorophylls, and carotenoids.6-8 Apart from the fundamental interest, these studies are also closely connected to numerous important technological applications.9 Conjugated polymers are primary candidates for new organic optical materials with large nonlinear polarizabilities.10-19 Potential applications include electroluminescence, light emitting diodes, ultrafast switches, photodetectors, biosensors, and optical limiting materials.20-27 Optical spectroscopy which allows chemists and physicists to probe the dynamics of vibrations and electronic excitations of molecules and solids is a powerful tool for the study of molecular electronic structure. The theoretical techniques used for describing spectra of isolated small molecules are usually quite different from those of molecular crystals, and many intermediate size systems, such as clusters and polymers, are not readily described by the methods developed for either of these limiting cases.28

520 citations