scispace - formally typeset
Search or ask a question
Author

Debesh Jha

Other affiliations: Chosun University
Bio: Debesh Jha is an academic researcher from Simula Research Laboratory. The author has contributed to research in topics: Computer science & Segmentation. The author has an hindex of 13, co-authored 59 publications receiving 703 citations. Previous affiliations of Debesh Jha include Chosun University.

Papers published on a yearly basis

Papers
More filters
Posted Content
TL;DR: Kvasir-SEG as mentioned in this paper is an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist.
Abstract: Pixel-wise image segmentation is a highly demanding task in medical-image analysis. In practice, it is difficult to find annotated medical images with corresponding segmentation masks. In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist. Moreover, we also generated the bounding boxes of the polyp regions with the help of segmentation masks. We demonstrate the use of our dataset with a traditional segmentation approach and a modern deep-learning based Convolutional Neural Network (CNN) approach. The dataset will be of value for researchers to reproduce results and compare methods. By adding segmentation masks to the Kvasir dataset, which only provide frame-wise annotations, we enable multimedia and computer vision researchers to contribute in the field of polyp segmentation and automatic analysis of colonoscopy images.

306 citations

Proceedings ArticleDOI
28 Jul 2020
TL;DR: Encouraging results show that DoubleU-Net can be used as a strong baseline for both medical image segmentation and cross-dataset evaluation testing to measure the generalizability of Deep Learning (DL) models.
Abstract: Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve the performance of U-Net on various segmentation tasks, we propose a novel architecture called DoubleU-Net, which is a combination of two U-Net architectures stacked on top of each other. The first U-Net uses a pre-trained VGG-19 as the encoder, which has already learned features from ImageNet and can be transferred to another task easily. To capture more semantic information efficiently, we added another U-Net at the bottom. We also adopt Atrous Spatial Pyramid Pooling (ASPP) to capture contextual information within the network. We have evaluated DoubleU-Net using four medical segmentation datasets, covering various imaging modalities such as colonoscopy, dermoscopy, and microscopy. Experiments on the MICCAI 2015 segmentation challenge, the CVC-ClinicDB, the 2018 Data Science Bowl challenge, and the Lesion boundary segmentation datasets demonstrate that the DoubleU-Net outperforms U-Net and the baseline models. Moreover, DoubleU-Net produces more accurate segmentation masks, especially in the case of the CVC-ClinicDB and MICCAI 2015 segmentation challenge datasets, which have challenging images such as smaller and flat polyps. These results show the improvement over the existing U-Net model. The encouraging results, produced on various medical image segmentation datasets, show that DoubleU-Net can be used as a strong baseline for both medical image segmentation and cross-dataset evaluation testing to measure the generalizability of Deep Learning (DL) models.

305 citations

Posted Content
TL;DR: ResUNet++ is proposed, which is an improved ResUNet architecture for colonoscopic image segmentation, which significantly outperforms U-Net and Res UNet, two key state-of-the-art deep learning architectures, by achieving high evaluation scores.
Abstract: Accurate computer-aided polyp detection and segmentation during colonoscopy examinations can help endoscopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer. Towards developing a fully automated model for pixel-wise polyp segmentation, we propose ResUNet++, which is an improved ResUNet architecture for colonoscopic image segmentation. Our experimental evaluations show that the suggested architecture produces good segmentation results on publicly available datasets. Furthermore, ResUNet++ significantly outperforms U-Net and ResUNet, two key state-of-the-art deep learning architectures, by achieving high evaluation scores with a dice coefficient of 81.33%, and a mean Intersection over Union (mIoU) of 79.27% for the Kvasir-SEG dataset and a dice coefficient of 79.55%, and a mIoU of 79.62% with CVC-612 dataset.

273 citations

Book ChapterDOI
05 Jan 2020
TL;DR: This paper presents Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist, and demonstrates the use of the dataset with a traditional segmentation approach and a modern deep-learning based Convolutional Neural Network approach.
Abstract: Pixel-wise image segmentation is a highly demanding task in medical-image analysis. In practice, it is difficult to find annotated medical images with corresponding segmentation masks. In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist. Moreover, we also generated the bounding boxes of the polyp regions with the help of segmentation masks. We demonstrate the use of our dataset with a traditional segmentation approach and a modern deep-learning based Convolutional Neural Network (CNN) approach. The dataset will be of value for researchers to reproduce results and compare methods. By adding segmentation masks to the Kvasir dataset, which only provide frame-wise annotations, we enable multimedia and computer vision researchers to contribute in the field of polyp segmentation and automatic analysis of colonoscopy images.

270 citations

Proceedings ArticleDOI
01 Dec 2019
TL;DR: Wang et al. as mentioned in this paper proposed an improved ResUNet architecture for colonoscopic image segmentation, which achieved a dice coefficient of 81.33% and a mean intersection over union (mIoU) of 79.27% for the Kvasir-SEG dataset.
Abstract: Accurate computer-aided polyp detection and segmentation during colonoscopy examinations can help endoscopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer. Towards developing a fully automated model for pixel-wise polyp segmentation, we propose ResUNet++, which is an improved ResUNet architecture for colonoscopic image segmentation. Our experimental evaluations show that the suggested architecture produces good segmentation results on publicly available datasets. Furthermore, ResUNet++ significantly outperforms U-Net and ResUNet, two key state-of-the-art deep learning architectures, by achieving high evaluation scores with a dice coefficient of 81.33%, and a mean Intersection over Union (mIoU) of 79.27% for the Kvasir-SEG dataset and a dice coefficient of 79.55%, and a mIoU of 79.62% with CVC-612 dataset.

258 citations


Cited by
More filters
Posted Content
TL;DR: Huang et al. as discussed by the authors proposed Pyramid Vision Transformer (PVT), which is a simple backbone network useful for many dense prediction tasks without convolutions, and achieved state-of-the-art performance on the COCO dataset.
Abstract: Although using convolutional neural networks (CNNs) as backbones achieves great successes in computer vision, this work investigates a simple backbone network useful for many dense prediction tasks without convolutions. Unlike the recently-proposed Transformer model (e.g., ViT) that is specially designed for image classification, we propose Pyramid Vision Transformer~(PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks. PVT has several merits compared to prior arts. (1) Different from ViT that typically has low-resolution outputs and high computational and memory cost, PVT can be not only trained on dense partitions of the image to achieve high output resolution, which is important for dense predictions but also using a progressive shrinking pyramid to reduce computations of large feature maps. (2) PVT inherits the advantages from both CNN and Transformer, making it a unified backbone in various vision tasks without convolutions by simply replacing CNN backbones. (3) We validate PVT by conducting extensive experiments, showing that it boosts the performance of many downstream tasks, e.g., object detection, semantic, and instance segmentation. For example, with a comparable number of parameters, RetinaNet+PVT achieves 40.4 AP on the COCO dataset, surpassing RetinNet+ResNet50 (36.3 AP) by 4.1 absolute AP. We hope PVT could serve as an alternative and useful backbone for pixel-level predictions and facilitate future researches. Code is available at this https URL.

845 citations

Journal ArticleDOI
TL;DR: A narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends, and discusses the many innovations that have advanced in deep learning and how these tools facilitate U-nets.
Abstract: U-net is an image segmentation technique developed primarily for image segmentation tasks. These traits provide U-net with a high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in nearly all major image modalities, from CT scans and MRI to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. Given that U-net’s potential is still increasing, this narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends. We also discuss the many innovations that have advanced in deep learning and discuss how these tools facilitate U-net. In addition, we review the different image modalities and application areas that have been enhanced by U-net.

425 citations

Book ChapterDOI
27 Sep 2021
TL;DR: TransFuse as discussed by the authors combines Transformers and CNNs in a parallel style, where both global dependency and low-level spatial details can be efficiently captured in a much shallower manner.
Abstract: Medical image segmentation - the prerequisite of numerous clinical needs - has been significantly prospered by recent advances in convolutional neural networks (CNNs). However, it exhibits general limitations on modeling explicit long-range relation, and existing cures, resorting to building deep encoders along with aggressive downsampling operations, leads to redundant deepened networks and loss of localized details. Hence, the segmentation task awaits a better solution to improve the efficiency of modeling global contexts while maintaining a strong grasp of low-level details. In this paper, we propose a novel parallel-in-branch architecture, TransFuse, to address this challenge. TransFuse combines Transformers and CNNs in a parallel style, where both global dependency and low-level spatial details can be efficiently captured in a much shallower manner. Besides, a novel fusion technique - BiFusion module is created to efficiently fuse the multi-level features from both branches. Extensive experiments demonstrate that TransFuse achieves the newest state-of-the-art results on both 2D and 3D medical image sets including polyp, skin lesion, hip, and prostate segmentation, with significant parameter decrease and inference speed improvement.

365 citations

Journal ArticleDOI
TL;DR: The open-source framework for classification of AD using CNN and T1-weighted MRI is extended and found that more than half of the surveyed papers may have suffered from data leakage and thus reported biased performance.

346 citations