scispace - formally typeset
Search or ask a question
Author

Debin Hou

Bio: Debin Hou is an academic researcher from Southeast University. The author has contributed to research in topics: Amplifier & Balun. The author has an hindex of 11, co-authored 95 publications receiving 729 citations. Previous affiliations of Debin Hou include Agency for Science, Technology and Research & University of Electronic Science and Technology of China.


Papers
More filters
Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations

Journal ArticleDOI
11 Jan 2021
TL;DR: In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization.
Abstract: Ever since the deployment of the first-generation of mobile telecommunications, wireless communication technology has evolved at a dramatically fast pace over the past four decades. The upcoming fifth-generation (5G) holds a great promise in providing an ultra-fast data rate, a very low latency, and a significantly improved spectral efficiency by exploiting the millimeter-wave spectrum for the first time in mobile communication infrastructures. In the years beyond 2030, newly emerged data-hungry applications and the greatly expanded wireless network will call for the sixth-generation (6G) communication that represents a significant upgrade from the 5G network – covering almost the entire surface of the earth and the near outer space. In both the 5G and future 6G networks, millimeter-wave technologies will play an important role in accomplishing the envisioned network performance and communication tasks. In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization. The requirements of each part for future 6G communications are also briefly discussed.

278 citations

Journal ArticleDOI
TL;DR: In this paper, the design methodologies of 130-GHz high gain and high efficiency on-chip meander slot antennas in a standard CMOS technology were discussed, where stacked dielectric resonators (DRs) are placed on the top of the feeding element to form series-fed antenna array.
Abstract: This work discusses the design methodologies of 130-GHz high gain and high efficiency on-chip meander slot antennas in a standard CMOS technology. In the proposed structure, stacked dielectric resonators (DRs) are placed on the top of the on-chip feeding element to form series-fed antenna array for antenna gain and efficiency improvement. The integrated antenna with double stacked DRs achieved a measured gain of 4.7 dBi at 130 GHz with a bandwidth of 11%. The antenna size is 0.8 ×0.9 mm2 and the simulation results indicate a radiation efficiency of 43%. To the best of our knowledge, this is the first demonstration of an on-chip antenna gain and efficiency enhancement through stacked DRs.

82 citations

Journal ArticleDOI
TL;DR: In this paper, a compact H-shaped defected ground structure (DGS) is applied to reduce the mutual coupling between array elements and eliminate the scan blindness in a microstrip phased array design.
Abstract: A compact H -shaped defected ground structure (DGS) is applied to reduce the mutual coupling between array elements and eliminate the scan blindness in a microstrip phased array design. The proposed DGS is inserted between the adjacent E -plane coupled elements in the array to suppress the pronounced surface waves. A two-element array is measured and the results show that a reduction in mutual coupling of 12 dB is obtained between elements at the operation frequency of the array. The scan properties of microstrip phased arrays with and without DGS are studied by the waveguide simulator method. The analysis indicates that the scan blindness of the microstrip phased array can be well eliminated because of the effect of the proposed DGS. Meanwhile, the active patterns of the array centre element in 7times3 element arrays with and without the H -shaped DGS are simulated, and the results agree with those obtained by the waveguide simulator method.

81 citations

Journal ArticleDOI
TL;DR: In this paper, a half-mode cavity-feeding structure provided a high antenna radiation efficiency with the dominant cavity mode (half-TEz100), and the dielectric resonators were designed to operate at higher-order modes (TEx?13, TEx?15) to enhance the antenna gain.
Abstract: In this paper, on-chip higher-order-mode dielectric-resonator antennas (DRAs), fed by a half-mode-backed cavity structure using standard CMOS technology, are presented. With the dominant cavity mode (half-TEz100), the half-mode cavity-feeding structure provided a high antenna radiation efficiency. The dielectric resonators (DRs) were designed to operate at higher-order modes (TEx?13, TEx?15) to enhance the antenna gain. At around 135 GHz, the proposed antennas demonstrated measured gains of 6.2 dBi and 7.5 dBi for the TEx?13 and TEx?15 modes, respectively, with corresponding simulated radiation efficiencies of 46% and 42%. Both antennas had a measured impedance bandwidth of 7%. The proposed antennas not only accomplished high gain without occupying a large chip area, but also maintained comparable or even improved cost performance and simplicity over other on-chip antennas.

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.

737 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on UAV communication towards 5G/B5G wireless networks is presented in this article, where UAVs are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions.
Abstract: Providing ubiquitous connectivity to diverse device types is the key challenge for 5G and beyond 5G (B5G). Unmanned aerial vehicles (UAVs) are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions. Compared to the communications with fixed infrastructure, UAV has salient attributes, such as flexible deployment, strong line-of-sight (LoS) connection links, and additional design degrees of freedom with the controlled mobility. In this paper, a comprehensive survey on UAV communication towards 5G/B5G wireless networks is presented. We first briefly introduce essential background and the space-air-ground integrated networks, as well as discuss related research challenges faced by the emerging integrated network architecture. We then provide an exhaustive review of various 5G techniques based on UAV platforms, which we categorize by different domains including physical layer, network layer, and joint communication, computing and caching. In addition, a great number of open research problems are outlined and identified as possible future research directions.

566 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT, and highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Abstract: The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.

305 citations

Journal ArticleDOI
11 Jan 2021
TL;DR: In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization.
Abstract: Ever since the deployment of the first-generation of mobile telecommunications, wireless communication technology has evolved at a dramatically fast pace over the past four decades. The upcoming fifth-generation (5G) holds a great promise in providing an ultra-fast data rate, a very low latency, and a significantly improved spectral efficiency by exploiting the millimeter-wave spectrum for the first time in mobile communication infrastructures. In the years beyond 2030, newly emerged data-hungry applications and the greatly expanded wireless network will call for the sixth-generation (6G) communication that represents a significant upgrade from the 5G network – covering almost the entire surface of the earth and the near outer space. In both the 5G and future 6G networks, millimeter-wave technologies will play an important role in accomplishing the envisioned network performance and communication tasks. In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization. The requirements of each part for future 6G communications are also briefly discussed.

278 citations

Journal ArticleDOI
TL;DR: A use case of fully autonomous driving is presented to show 6G supports massive IoT and some breakthrough technologies, such as machine learning and blockchain, in 6G are introduced, where the motivations, applications, and open issues of these technologies for massive IoT are summarized.
Abstract: Nowadays, many disruptive Internet-of-Things (IoT) applications emerge, such as augmented/virtual reality online games, autonomous driving, and smart everything, which are massive in number, data intensive, computation intensive, and delay sensitive. Due to the mismatch between the fifth generation (5G) and the requirements of such massive IoT-enabled applications, there is a need for technological advancements and evolutions for wireless communications and networking toward the sixth-generation (6G) networks. 6G is expected to deliver extended 5G capabilities at a very high level, such as Tbps data rate, sub-ms latency, cm-level localization, and so on, which will play a significant role in supporting massive IoT devices to operate seamlessly with highly diverse service requirements. Motivated by the aforementioned facts, in this article, we present a comprehensive survey on 6G-enabled massive IoT. First, we present the drivers and requirements by summarizing the emerging IoT-enabled applications and the corresponding requirements, along with the limitations of 5G. Second, visions of 6G are provided in terms of core technical requirements, use cases, and trends. Third, a new network architecture provided by 6G to enable massive IoT is introduced, i.e., space–air–ground–underwater/sea networks enhanced by edge computing. Fourth, some breakthrough technologies, such as machine learning and blockchain, in 6G are introduced, where the motivations, applications, and open issues of these technologies for massive IoT are summarized. Finally, a use case of fully autonomous driving is presented to show 6G supports massive IoT.

263 citations