scispace - formally typeset
Search or ask a question
Author

Debnarayan Jana

Other affiliations: National Taiwan University
Bio: Debnarayan Jana is an academic researcher from University of Calcutta. The author has contributed to research in topics: Graphene & Density functional theory. The author has an hindex of 23, co-authored 127 publications receiving 2328 citations. Previous affiliations of Debnarayan Jana include National Taiwan University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an imbibition experiment investigating the multiaffinity of the pinned rough interfaces was conducted, and the results showed that the rough interfaces have a density dependent multiiaffine nature.
Abstract: We report an imbibition experiment investigating the multiaffinity of the pinned rough interfaces. We observe density dependent multiaffine nature of the rough interfaces. Results are well compared with the existence of power law noise as well as the dependence on particle size of the morphology of the rough interfaces.

4 citations

Journal ArticleDOI
TL;DR: In this article, density functional theory (DFT) computations were performed to study the change in electronic and optical properties of free-standing graphene monolayer by the adsorption of PTCDI molecule.

4 citations

Journal ArticleDOI
01 Jun 2020
TL;DR: In this paper, the authors have used explicit fundamental symmetry to understand the basic features of Dirac materials occurring in three diverse systems in a compact 2 × 2 matrix way, and the robustness of the Dirac cones has also been explored from the scientific notion of topological physics.
Abstract: Recent years have been the platform of discovery of a wide range of materials, like d-wave superconductors, graphene, and topological insulators. These materials do indeed share a fundamental similarity in their low-energy spectra namely the fermionic excitations. There carriers behave as massless Dirac particles rather than conventional fermions that obey the usual Schrodinger Hamiltonian. A surprising aspect of most Dirac materials is that many of their physical properties measured in experiments can be understood at the non-interacting level. In spite of the large effective coupling constant in case of graphene, it has been observed that the interactions do not seem to play a major key role. Controlling the electrons at Dirac nodes in the first Brillouin zone needs the interplay of sublattice symmetry, inversion symmetry and the time-reversal symmetry. In this article, we have used explicit fundamental symmetry to understand the basic features of Dirac materials occurring in three diverse systems in a compact 2 × 2 matrix way. Furthermore, the robustness of the Dirac cones has also been explored from the scientific notion of topological physics. In addition, an elementary introduction on the three dimensional (3D) topological insulators and d wave superconductors will shed light in their respective fields. Furthermore, we have also discussed the way to evaluate the effective mass tensor of the carriers in the two dimensional (2D) Dirac materials. This methodology has also been critically extended to three dimensional (3D) topological insulators and d wave superconductors.

3 citations

Journal ArticleDOI
TL;DR: The analysis of this study indicates that the optical anisotropies can be gained easily in these boron-doped systems by appropriately choosing the direction of the polarization of the electromagnetic field.
Abstract: The optical properties of (8,0) BC3 and B3C single-wall carbon nanotubes (SWCNTs) are computed using ab initio density functional theory (DFT). The electronic band structure reveals that the Fermi energy of B3C system is reduced compared to BC3. The static dielectric constant in the long wavelength limit for B3C system is 9 times larger than that of BC3 in unpolarized electromagnetic field. Within 10 eV frequency (energy) range, the absorption coefficient of B3C is higher compared to BC3, while, above 10 eV, it is less than that of BC3. In parallel polarization, the peak of the loss function for B3C is shifted to higher frequency (energy) region with significantly six orders of magnitude compared to BC3 system. The analysis of this study indicates that the optical anisotropies can be gained easily in these boron-doped systems by appropriately choosing the direction of the polarization of the electromagnetic field. Besides, the results of the loss functions may throw some light on the nature of collective excitations of these two systems.

3 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that charged scalar fields in (2+1) and (3+ 1) dimensions are always diamagnetic, even in the presence of interactions and at finite temperatures.
Abstract: The physical and mathematical mechanism behind diamagnetism of N (finite) spinless bosons (relativistic or non-relativistic) is well known. The mathematical signature of this diamagnetism follows from Kato's inequality while its physical way of understanding goes back to Van Leewen. One can guess that it might be true in the field theoretic case also. While the work on systems with a finite number of degrees of freedom suggests that the same result is true in a field theory, it does not by any means prove it. In the field theoretic context one has to develop a suitable regularisation scheme to renormalise the free energy. We show that charged scalar fields in (2+1) and (3+1) dimensions are always diamagnetic, even in the presence of interactions and at finite temperatures. This generalises earlier work on the diamagnetism of charged spinless bosons to the case of infinite degrees of freedom. We also discuss possible applications of the theory.

3 citations


Cited by
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon and find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of flexible membranes.
Abstract: The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.

1,367 citations