scispace - formally typeset
Search or ask a question
Author

Debo Hu

Bio: Debo Hu is an academic researcher from Center for Excellence in Education. The author has contributed to research in topics: Uniaxial crystal & Polariton. The author has an hindex of 1, co-authored 1 publications receiving 7 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 2021-Nature
TL;DR: In this article, a near-field observation of ghost phonon polaritons is reported, which propagate with in-plane hyperbolic dispersion on the surface of a polar uniaxial crystal and, at the same time, exhibit oblique wavefronts in the bulk.
Abstract: Polaritons in anisotropic materials result in exotic optical features, which can provide opportunities to control light at the nanoscale1-10. So far these polaritons have been limited to two classes: bulk polaritons, which propagate inside a material, and surface polaritons, which decay exponentially away from an interface. Here we report a near-field observation of ghost phonon polaritons, which propagate with in-plane hyperbolic dispersion on the surface of a polar uniaxial crystal and, at the same time, exhibit oblique wavefronts in the bulk. Ghost polaritons are an atypical non-uniform surface wave solution of Maxwell's equations, arising at the surface of uniaxial materials in which the optic axis is slanted with respect to the interface. They exhibit an unusual bi-state nature, being both propagating (phase-progressing) and evanescent (decaying) within the crystal bulk, in contrast to conventional surface waves that are purely evanescent away from the interface. Our real-space near-field imaging experiments reveal long-distance (over 20 micrometres), ray-like propagation of deeply subwavelength ghost polaritons across the surface, verifying long-range, directional and diffraction-less polariton propagation. At the same time, we show that control of the out-of-plane angle of the optic axis enables hyperbolic-to-elliptic topological transitions at fixed frequency, providing a route to tailor the band diagram topology of surface polariton waves. Our results demonstrate a polaritonic wave phenomenon with unique opportunities to tailor nanoscale light in natural anisotropic crystals.

69 citations


Cited by
More filters
Journal ArticleDOI
10 Jan 2022-eLight
TL;DR: Hyperbolic metamaterials have an extremely high anisotropy with a hyperbolic dispersion relation and exhibit a high density of states which have been exploited in various applications, such as super-resolution imaging, negative refraction, and enhanced emission control as mentioned in this paper .
Abstract: Abstract Optical metamaterials have presented an innovative method of manipulating light. Hyperbolic metamaterials have an extremely high anisotropy with a hyperbolic dispersion relation. They are able to support high- k modes and exhibit a high density of states which produce distinctive properties that have been exploited in various applications, such as super-resolution imaging, negative refraction, and enhanced emission control. Here, state-of-the-art hyperbolic metamaterials are reviewed, starting from the fundamental principles to applications of artificially structured hyperbolic media to suggest ways to fuse natural two-dimensional hyperbolic materials. The review concludes by indicating the current challenges and our vision for future applications of hyperbolic metamaterials.

147 citations

Journal ArticleDOI
08 Sep 2021-Nature
TL;DR: In this paper, the authors provide an overview of the state of the art of interface optics for the control of van der Waals polaritons, including refractive optics, meta-optics and moire engineering.
Abstract: Polaritons are hybrid excitations of matter and photons. In recent years, polaritons in van der Waals nanomaterials—known as van der Waals polaritons—have shown great promise to guide the flow of light at the nanoscale over spectral regions ranging from the visible to the terahertz. A vibrant research field based on manipulating strong light–matter interactions in the form of polaritons, supported by these atomically thin van der Waals nanomaterials, is emerging for advanced nanophotonic and opto-electronic applications. Here we provide an overview of the state of the art of exploiting interface optics—such as refractive optics, meta-optics and moire engineering—for the control of van der Waals polaritons. This enhanced control over van der Waals polaritons at the nanoscale has not only unveiled many new phenomena, but has also inspired valuable applications—including new avenues for nano-imaging, sensing, on-chip optical circuitry, and potentially many others in the years to come. This Review discusses the state of the art of interface optics—including refractive optics, meta-optics and moire engineering—for the control of van der Waals polaritons.

81 citations

Journal ArticleDOI
TL;DR: In this paper , the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers are discussed.
Abstract: Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light–matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.

24 citations

Journal ArticleDOI
TL;DR: In this paper , anisotropic PhPs supported by biaxial van der Waals (vdW) slabs are actively tuned by simply gating an integrated graphene layer, which enables controlling the canalization of PhPs along different in-plane directions in twisted heterostructures.
Abstract: Phonon polaritons (PhPs)─lattice vibrations coupled to electromagnetic fields─in highly anisotropic media display a plethora of intriguing optical phenomena, including ray-like propagation, anomalous refraction, and topological transitions, among others, which have potential for unprecedented manipulation of the flow of light at the nanoscale. However, the properties of these PhPs are intrinsically dictated by the anisotropic crystal structure of the host material. Although in-plane anisotropic PhPs can be steered, and even canalized, by twisting individual crystal slabs in a van der Waals (vdW) stack, active control of their propagation via external stimuli presents a significant challenge. Here, we report on a technology in which anisotropic PhPs supported by biaxial vdW slabs are actively tuned by simply gating an integrated graphene layer. Excitingly, we predict active tuning of optical topological transitions, which enable controlling the canalization of PhPs along different in-plane directions in twisted heterostructures. Apart from their fundamental interest, our findings hold promises for the development of optoelectronic devices (sensors, photodetectors, etc.) based on PhPs with dynamically controllable properties.

20 citations