scispace - formally typeset
Search or ask a question
Author

Débora Lanznaster

Bio: Débora Lanznaster is an academic researcher from François Rabelais University. The author has contributed to research in topics: Amyotrophic lateral sclerosis & Guanosine. The author has an hindex of 13, co-authored 28 publications receiving 489 citations. Previous affiliations of Débora Lanznaster include Universidade Federal de Santa Catarina.

Papers
More filters
Journal ArticleDOI
01 May 2019-Brain
TL;DR: It is concluded that TDP-43 aggregation is a major factor in neuronal death in ALS, with potential therapeutic implications, and Hergesheimer et al.
Abstract: Transactive response DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein that forms phosphorylated and ubiquitinated aggregates in the cytoplasm of motor neurons in amyotrophic lateral sclerosis, which is a hallmark of this disease. Amyotrophic lateral sclerosis is a neurodegenerative condition affecting the upper and lower motor neurons. Even though the aggregative property of TDP-43 is considered a cornerstone of amyotrophic lateral sclerosis, there has been major controversy regarding the functional link between TDP-43 aggregates and cell death. In this review, we attempt to reconcile the current literature surrounding this debate by discussing the results and limitations of the published data relating TDP-43 aggregates to cytotoxicity, as well as therapeutic perspectives of TDP-43 aggregate clearance. We point out key data suggesting that the formation of TDP-43 aggregates and the capacity to self-template and propagate among cells as a 'prion-like' protein, another pathological property of TDP-43 aggregates, are a significant cause of motor neuronal death. We discuss the disparities among the various studies, particularly with respect to the type of models and the different forms of TDP-43 used to evaluate cellular toxicity. We also examine how these disparities can interfere with the interpretation of the results pertaining to a direct toxic effect of TDP-43 aggregates. Furthermore, we present perspectives for improving models in order to better uncover the toxic role of aggregated TDP-43. Finally, we review the recent studies on the enhancement of the cellular clearance mechanisms of autophagy, the ubiquitin proteasome system, and endocytosis in an attempt to counteract TDP-43 aggregation-induced toxicity. Altogether, the data available so far encourage us to suggest that the cytoplasmic aggregation of TDP-43 is key for the neurodegeneration observed in motor neurons in patients with amyotrophic lateral sclerosis. The corresponding findings provide novel avenues toward early therapeutic interventions and clinical outcomes for amyotrophic lateral sclerosis management.

130 citations

Journal ArticleDOI
TL;DR: The protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels are addressed, and the intracellular mechanisms modulated by Guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport are discussed.
Abstract: Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson's and Alzheimer's diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases.

84 citations

Journal ArticleDOI
TL;DR: The data confirm the antinociceptive effect of TTHL and demonstrate its effect in inflammatory animal models, providing novel data about this compound, which could be useful as an anti-inflammatory drug.

42 citations

Journal ArticleDOI
TL;DR: This review article presents up-to-date GBP biology, focusing mainly on the mechanisms of action that may lead to the neuromodulator role of GBPs observed in neurological disorders.
Abstract: The function of guanine-based purines (GBPs) is mostly attributed to the intracellular modulation of heteromeric and monomeric G proteins. However, extracellular effects of guanine derivatives have also been recognized. Thus, in the central nervous system (CNS), a guanine-based purinergic system that exerts neuromodulator effects, has been postulated. The thesis that GBPs are neuromodulators emerged from in vivo and in vitro studies, in which neurotrophic and neuroprotective effects of these kinds of molecules (i.e., guanosine) were demonstrated. GBPs induce several important biological effects in rodent models and have been shown to reduce seizures and pain, stabilize mood disorder behavior and protect against gliomas and diseases related with aging, such as ischemia or Parkinson and Alzheimer diseases. In vitro studies to evaluate the protective and trophic effects of guanosine, and of the nitrogenous base guanine, have been fundamental for understanding the mechanisms of action of GBPs, as well as the signaling pathways involved in their biological roles. Conversely, although selective binding sites for guanosine have been identified in the rat brain, GBP receptors have not been still described. In addition, GBP neuromodulation may depend on the capacity of GBPs to interact with well-known membrane proteins in glutamatergic and adenosinergic systems. Overall, in this review article, we present up-to-date GBP biology, focusing mainly on the mechanisms of action that may lead to the neuromodulator role of GBPs observed in neurological disorders.

41 citations

Journal ArticleDOI
TL;DR: The results show, for the first time, that crude extract, fractions and pure compounds obtained from P. tuberculatum produce marked antinociception against the acetic acid-induced visceral nociceptive response, supporting the ethnomedical use of P. tuberculosis.
Abstract: This study investigated the possible antinociceptive effect of the crude extract, fractions and pure compounds (three alkaloids) obtained from fruits of Piper tuberculatum JACQ. (Piperaceae) in acetic acid-induced visceral pain in mice. Oral administration of crude extract and fractions (CH2Cl2, EtOAc, methanol and hexane) (3—300 mg kg−1) caused a dose-related and significant inhibition of the acetic acid-induced visceral nociceptive response. The crude extract, dichloromethane (CH2Cl2) and ethyl acetate (EtOAc) fractions were more potent than methanol and hexane fractions. The isolated alkaloids dihydro-piplartine, piplartine and 3,4,5-trimethoxydihydrocinnamic acid (0.0001—30 mg kg−1) exhibited significant and dose-related antinociceptive effects against acetic acid-induced visceral pain. The results show, for the first time, that crude extract, fractions and pure compounds obtained from P. tuberculatum produce marked antinociception against the acetic acid-induced visceral nociceptive response, supporting the ethnomedical use of P. tuberculatum.

40 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: It is concluded that piplartine is effective for use in cancer therapy and its safety using chronic toxicological studies should be addressed to support the viability of clinical trials.

244 citations

Journal ArticleDOI
TL;DR: The authors reviewed similarities and differences among four main proteins, α-synuclein, FUS, tau, and TDP-43, which are found aggregated in different diseases and were independently shown to phase separate.

177 citations

Journal ArticleDOI
TL;DR: The theme of protein mislocalization as a key mechanism underlying ALS is brought forth, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated.
Abstract: Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.

143 citations

Journal ArticleDOI
TL;DR: A mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed is synthesized.
Abstract: It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.

141 citations