scispace - formally typeset
Search or ask a question
Author

Deborah A. Haber

Bio: Deborah A. Haber is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Helioseismology & Convection zone. The author has an hindex of 18, co-authored 54 publications receiving 2585 citations. Previous affiliations of Deborah A. Haber include Joint Institute for Nuclear Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors report on joint helioseismic analyses of solar rotation in the convection zone and in the outer part of the radiative core using the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft.
Abstract: The splitting of the frequencies of the global resonant acoustic modes of the Sun by large-scale flows and rotation permits study of the variation of angular velocity Ω with both radius and latitude within the turbulent convection zone and the deeper radiative interior. The nearly uninterrupted Doppler imaging observations, provided by the Solar Oscillations Investigation (SOI) using the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft positioned at the L1 Lagrangian point in continuous sunlight, yield oscillation power spectra with very high signal-to-noise ratios that allow frequency splittings to be determined with exceptional accuracy. This paper reports on joint helioseismic analyses of solar rotation in the convection zone and in the outer part of the radiative core. Inversions have been obtained for a medium-l mode set (involving modes of angular degree l extending to about 250) obtained from the first 144 day interval of SOI-MDI observations in 1996. Drawing inferences about the solar internal rotation from the splitting data is a subtle process. By applying more than one inversion technique to the data, we get some indication of what are the more robust and less robust features of our inversion solutions. Here we have used seven different inversion methods. To test the reliability and sensitivity of these methods, we have performed a set of controlled experiments utilizing artificial data. This gives us some confidence in the inferences we can draw from the real solar data. The inversions of SOI-MDI data have confirmed that the decrease of Ω with latitude seen at the surface extends with little radial variation through much of the convection zone, at the base of which is an adjustment layer, called the tachocline, leading to nearly uniform rotation deeper in the radiative interior. A prominent rotational shearing layer in which Ω increases just below the surface is discernible at low to mid latitudes. Using the new data, we have also been able to study the solar rotation closer to the poles than has been achieved in previous investigations. The data have revealed that the angular velocity is distinctly lower at high latitudes than the values previously extrapolated from measurements at lower latitudes based on surface Doppler observations and helioseismology. Furthermore, we have found some evidence near latitudes of 75° of a submerged polar jet which is rotating more rapidly than its immediate surroundings. Superposed on the relatively smooth latitudinal variation in Ω are alternating zonal bands of slightly faster and slower rotation, each extending some 10° to 15° in latitude. These relatively weak banded flows have been followed by inversion to a depth of about 5% of the solar radius and appear to coincide with the evolving pattern of torsional oscillations reported from earlier surface Doppler studies.

959 citations

Journal ArticleDOI
31 May 1996-Science
TL;DR: Frequency splittings derived from GONG observations confirm that the variation of rotation rate with latitude seen at the surface carries through much of the convection zone, at the base of which is an adjustment layer leading to latitudinally independent rotation at greater depths.
Abstract: Splitting of the sun's global oscillation frequencies by large-scale flows can be used to investigate how rotation varies with radius and latitude within the solar interior. The nearly uninterrupted observations by the Global Oscillation Network Group (GONG) yield oscillation power spectra with high duty cycles and high signal-to-noise ratios. Frequency splittings derived from GONG observations confirm that the variation of rotation rate with latitude seen at the surface carries through much of the convection zone, at the base of which is an adjustment layer leading to latitudinally independent rotation at greater depths. A distinctive shear layer just below the surface is discernible at low to mid-latitudes.

367 citations

Journal ArticleDOI
TL;DR: Using the local helioseismic technique of ring-diagram analysis applied to Michelson Doppler Imager (MDI) Dynamics Program data from the Solar and Heliospheric Observatory, this paper discovered that the meridional flow within the upper convection zone can develop additional circulation cells whose boundaries wander in latitude and depth as the solar cycle progresses.
Abstract: Using the local helioseismic technique of ring-diagram analysis applied to Michelson Doppler Imager (MDI) Dynamics Program data from the Solar and Heliospheric Observatory, we have discovered that the meridional flow within the upper convection zone can develop additional circulation cells whose boundaries wander in latitude and depth as the solar cycle progresses. We report on the large-scale meridional and zonal flows that we observe from 1996 to 2001. In particular, we discuss the appearance and evolution of a submerged meridional cell during the years 1998-2001, which arose in the northern hemisphere and disrupted the orderly poleward flow and symmetry about the equator that is typically observed. The meridional flows in the southern and northern hemispheres exhibit striking asymmetry during the past four years of the advancing solar cycle. Such asymmetry and additional circulation cells should have profound impact on the transport of angular momentum and magnetic field within the surface layers. These flows may have a significant role in the establishment and maintenance of the near-surface rotational shear layer.

349 citations

Journal ArticleDOI
31 May 1996-Science
TL;DR: The GONG m-averaged frequency measurements differ from other helioseismic data sets by 0.03 to 0.08 microhertz; the differences arise from a combination of systematic errors, random errors, and possible changes in solar structure.
Abstract: The Global Oscillation Network Group (GONG) project estimates the frequencies, amplitudes, and linewidths of more than 250,000 acoustic resonances of the sun from data sets lasting 36 days. The frequency resolution of a single data set is 0.321 microhertz. For frequencies averaged over the azimuthal order m , the median formal error is 0.044 microhertz, and the associated median fractional error is 1.6 × 10 −5 . For a 3-year data set, the fractional error is expected to be 3 × 10 −6 . The GONG m -averaged frequency measurements differ from other helioseismic data sets by 0.03 to 0.08 microhertz. The differences arise from a combination of systematic errors, random errors, and possible changes in solar structure.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the results of applying ring diagrams to 30° diameter areas over the solar surface in an attempt to reach deeper into the solar interior are derived by applying this technique to Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI) data.
Abstract: Ring-diagram analysis, a local helioseismology technique, has proven to be very useful for studying solar subsurface velocity flows down to a depth of about 0.97 R☉. The depth range is determined by the modes used in this type of analysis, and thus depends on the size of the area analyzed. Extending the area allows us to detect lower spherical harmonic degree (l) modes which, at a constant frequency, penetrate deeper in the Sun. However, there is a compromise between the size of the area and the validity of the plane-wave approximation used by the technique. We present the results of applying the ring diagrams to 30° diameter areas over the solar surface in an attempt to reach deeper into the solar interior. Meridional flows for 25 consecutive Carrington rotations (1985-2009) are derived by applying this technique to Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI) data. This covers a time span of almost 2 yr, starting at the beginning of 2002. The amplitude of the meridional flow shows a variation of the order of 5 m s-1 during this period. Our results indicate that the flows increase toward the interior of the Sun for the depth range studied. We find a 1 yr periodicity in the appearance of an equatorward meridional cell at high latitudes that coincides with maximum values of the solar inclination toward the Earth (B0 angle).

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
TL;DR: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances as mentioned in this paper.
Abstract: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

2,242 citations

Journal ArticleDOI
31 May 1996-Science
TL;DR: Data from the GONG project and other helioseismic experiments reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone, which is plausible that the sound-speed differences reflect weak mixing in stellar interiors.
Abstract: Data from the Global Oscillation Network Group (GONG) project and other helioseismic experiments provide a test for models of stellar interiors and for the thermodynamic and radiative properties, on which the models depend, of matter under the extreme conditions found in the sun. Current models are in agreement with the helioseismic inferences, which suggests, for example, that the disagreement between the predicted and observed fluxes of neutrinos from the sun is not caused by errors in the models. However, the GONG data reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone. These discrepancies indicate effects that have so far not been correctly accounted for; for example, it is plausible that the sound-speed differences reflect weak mixing in stellar interiors, of potential importance to the overall evolution of stars and ultimately to estimates of the age of the galaxy based on stellar evolution calculations.

1,136 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on joint helioseismic analyses of solar rotation in the convection zone and in the outer part of the radiative core using the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft.
Abstract: The splitting of the frequencies of the global resonant acoustic modes of the Sun by large-scale flows and rotation permits study of the variation of angular velocity Ω with both radius and latitude within the turbulent convection zone and the deeper radiative interior. The nearly uninterrupted Doppler imaging observations, provided by the Solar Oscillations Investigation (SOI) using the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft positioned at the L1 Lagrangian point in continuous sunlight, yield oscillation power spectra with very high signal-to-noise ratios that allow frequency splittings to be determined with exceptional accuracy. This paper reports on joint helioseismic analyses of solar rotation in the convection zone and in the outer part of the radiative core. Inversions have been obtained for a medium-l mode set (involving modes of angular degree l extending to about 250) obtained from the first 144 day interval of SOI-MDI observations in 1996. Drawing inferences about the solar internal rotation from the splitting data is a subtle process. By applying more than one inversion technique to the data, we get some indication of what are the more robust and less robust features of our inversion solutions. Here we have used seven different inversion methods. To test the reliability and sensitivity of these methods, we have performed a set of controlled experiments utilizing artificial data. This gives us some confidence in the inferences we can draw from the real solar data. The inversions of SOI-MDI data have confirmed that the decrease of Ω with latitude seen at the surface extends with little radial variation through much of the convection zone, at the base of which is an adjustment layer, called the tachocline, leading to nearly uniform rotation deeper in the radiative interior. A prominent rotational shearing layer in which Ω increases just below the surface is discernible at low to mid latitudes. Using the new data, we have also been able to study the solar rotation closer to the poles than has been achieved in previous investigations. The data have revealed that the angular velocity is distinctly lower at high latitudes than the values previously extrapolated from measurements at lower latitudes based on surface Doppler observations and helioseismology. Furthermore, we have found some evidence near latitudes of 75° of a submerged polar jet which is rotating more rapidly than its immediate surroundings. Superposed on the relatively smooth latitudinal variation in Ω are alternating zonal bands of slightly faster and slower rotation, each extending some 10° to 15° in latitude. These relatively weak banded flows have been followed by inversion to a depth of about 5% of the solar radius and appear to coincide with the evolving pattern of torsional oscillations reported from earlier surface Doppler studies.

959 citations

Journal ArticleDOI
TL;DR: In this article, a dynamo model is developed from these ingredients, and applied to the problem of angular momentum transport in stellar interiors, which is found to be more effective in transporting angular momentum than the known hydrodynamic mechanisms.
Abstract: Magnetic fields can be created in stably stratified (non-convective) layers in a differentially rotating star. A magnetic instability in the toroidal field (wound up by differential rotation) replaces the role of convection in closing the field amplification loop. Tayler instability is likely to be the most relevant magnetic instability. A dynamo model is developed from these ingredients, and applied to the problem of angular momentum transport in stellar interiors. It produces a predominantly horizontal field. This dynamo process is found to be more effective in transporting angular momentum than the known hydrodynamic mechanisms. It might account for the observed pattern of rotation in the solar core.

955 citations