scispace - formally typeset
D

Deborah Estrin

Researcher at Cornell University

Publications -  573
Citations -  108529

Deborah Estrin is an academic researcher from Cornell University. The author has contributed to research in topics: Wireless sensor network & Key distribution in wireless sensor networks. The author has an hindex of 135, co-authored 562 publications receiving 106177 citations. Previous affiliations of Deborah Estrin include University of California, Los Angeles & Journal of Medical Internet Research.

Papers
More filters
Proceedings ArticleDOI

Directed diffusion: a scalable and robust communication paradigm for sensor networks

TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Journal Article

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

TL;DR: S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Proceedings ArticleDOI

An energy-efficient MAC protocol for wireless sensor networks

TL;DR: S-MAC uses three novel techniques to reduce energy consumption and support self-configuration, and applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network.
Journal ArticleDOI

GPS-less low-cost outdoor localization for very small devices

TL;DR: This work reviews localization techniques and evaluates the effectiveness of a very simple connectivity metric method for localization in outdoor environments that makes use of the inherent RF communications capabilities of these devices.
Proceedings ArticleDOI

Next century challenges: scalable coordination in sensor networks

TL;DR: This paper believes that localized algorithms (in which simple local node behavior achieves a desired global objective) may be necessary for sensor network coordination.