scispace - formally typeset
Search or ask a question
Author

Deborah J. Cook

Bio: Deborah J. Cook is an academic researcher from McMaster University. The author has contributed to research in topics: Intensive care & Intensive care unit. The author has an hindex of 173, co-authored 907 publications receiving 148928 citations. Previous affiliations of Deborah J. Cook include McMaster University Medical Centre & Queen's University.


Papers
More filters
Journal ArticleDOI
TL;DR: There is within medicine, somewhere beneath the pessimism and discouragement resulting from the disarray of the health care system and its stupendous cost, an undercurrent of almost outrageous optimism about what may lie ahead for the treatment of human disease if only the authors can keep learning.
Abstract: There is within medicine, somewhere beneath the pessimism and discouragement resulting from the disarray of the health care system and its stupendous cost, an undercurrent of almost outrageous optimism about what may lie ahead for the treatment of human disease if only we can keep learning.

216 citations

Journal ArticleDOI
01 Mar 1995-JAMA
TL;DR: While ICU health care workers consistently identify a number of patient factors as important in decisions to withdraw care, there is extreme variability, which may be explained in part by the values of individual health care providers.
Abstract: OBJECTIVE To examine the attitudes of health care workers regarding the withdrawal of life support. DESIGN Cross-sectional survey. PARTICIPANTS Attending staff, house staff, and intensive care unit (ICU) nurses in 37 Canadian university-affiliated hospitals. MAIN OUTCOME MEASURES Health care workers' ratings of the importance of 17 factors considered in the decision to withdraw life support, and their ratings of five levels of care ranging from comfort measures to intensive care in two of 12 different clinical scenarios. RESULTS We surveyed 1361 respondents (149 of 167 potentially eligible ICU attending staff, 142 of 173 ICU house staff, and 1070 of 1455 ICU nurses, with response rates of 89%, 82% and 74%, respectively). The most important factors were likelihood of surviving the current episode, likelihood of long-term survival, premorbid cognitive function, and age of the patient. In choosing the level of care for the patient scenarios, the same option was chosen by more than 50% of respondents in only one of 12 scenarios; opposite extremes of care were chosen by more than 10% of the respondents in eight of 12 scenarios. Respondent characteristics affecting choices included the number of years since graduation, the city and province in which they worked, the number of beds in their ICU, and their assessment of the likelihood that they would withdraw life support in comparison with their colleagues (P < .001 for all comparisons). CONCLUSIONS While ICU health care workers consistently identify a number of patient factors as important in decisions to withdraw care, there is extreme variability, which may be explained in part by the values of individual health care providers.

214 citations

Journal ArticleDOI
TL;DR: This Task Force suggests an approach to use of NPPV for patients and families who choose to forego endotracheal intubation that should be applied after careful discussion of the goals of care, with explicit parameters for success and failure, by experienced personnel, and in appropriate healthcare settings.
Abstract: Objective:Although noninvasive positive pressure ventilation (NPPV) is a widely accepted treatment for some patients with acute respiratory failure, the use of NPPV in patients who have decided to forego endotracheal intubation is controversial. Therefore, the Society of Critical Care Medicine charg

213 citations

Journal ArticleDOI
TL;DR: The combination of low-dose vasopressin and corticosteroids was associated with decreased mortality and organ dysfunction compared with norepinephrine and cortICosteroids.
Abstract: OBJECTIVE: Vasopressin and corticosteroids are often added to support cardiovascular dysfunction in patients who have septic shock that is nonresponsive to fluid resuscitation and norepinephrine infusion. However, it is unknown whether vasopressin treatment interacts with corticosteroid treatment. DESIGN: Post hoc substudy of a multicenter randomized blinded controlled trial of vasopressin vs. norepinephrine in septic shock. SETTING: Twenty-seven Intensive Care Units in Canada, Australia, and the United States. PATIENTS: : Seven hundred and seventy-nine patients who had septic shock and were ongoing hypotension requiring at least 5 microg/min of norepinephrine infusion for 6 hours. INTERVENTIONS: Patients were randomized to blinded vasopressin (0.01-0.03 units/min) or norepinephrine (5-15 microg/min) infusion added to open-label vasopressors. Corticosteroids were given according to clinical judgment at any time in the 28-day postrandomization period. MEASUREMENTS: The primary end point was 28-day mortality. We tested for interaction between vasopressin treatment and corticosteroid treatment using logistic regression. Secondary end points were organ dysfunction, use of open-label vasopressors and vasopressin levels. MAIN RESULTS: There was a statistically significant interaction between vasopressin infusion and corticosteroid treatment (p = 0.008). In patients who had septic shock and were also treated with corticosteroids, vasopressin, compared to norepinephrine, was associated with significantly decreased mortality (35.9% vs. 44.7%, respectively, p = 0.03). In contrast, in patients who did not receive corticosteroids, vasopressin was associated with increased mortality compared with norepinephrine (33.7% vs. 21.3%, respectively, p = 0.06). In patients who received vasopressin infusion, use of corticosteroids significantly increased plasma vasopressin levels by 33% at 6 hours (p = 0.006) to 67% at 24 hours (p = 0.025) compared with patients who did not receive corticosteroids. CONCLUSIONS: There is a statistically significant interaction between vasopressin and corticosteroids. The combination of low-dose vasopressin and corticosteroids was associated with decreased mortality and organ dysfunction compared with norepinephrine and corticosteroids.

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Moher et al. as mentioned in this paper introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses, which is used in this paper.
Abstract: David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses

62,157 citations

Journal Article
TL;DR: The QUOROM Statement (QUality Of Reporting Of Meta-analyses) as mentioned in this paper was developed to address the suboptimal reporting of systematic reviews and meta-analysis of randomized controlled trials.
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA

46,935 citations

Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
TL;DR: A structured summary is provided including, as applicable, background, objectives, data sources, study eligibility criteria, participants, interventions, study appraisal and synthesis methods, results, limitations, conclusions and implications of key findings.

31,379 citations