scispace - formally typeset
Search or ask a question
Author

Deepak Kumar Kaushik

Bio: Deepak Kumar Kaushik is an academic researcher from University of Calgary. The author has contributed to research in topics: Microglia & Neuroinflammation. The author has an hindex of 18, co-authored 30 publications receiving 1082 citations. Previous affiliations of Deepak Kumar Kaushik include National Brain Research Centre & Allen Institute for Brain Science.

Papers
More filters
Journal ArticleDOI
TL;DR: This review surveyed the identified triggers and pathways of inflammasome activation and the following events which ultimately accomplish the innate inflammatory response in the CNS, with a goal to provide an analytical insight into disease pathogenesis that might provide cues for devising novel therapeutic strategies.
Abstract: Neuroinflammation is a complex innate response of neural tissue against harmful effects of diverse stimuli viz., pathogens, damaged cells and irritants within the Central Nervous System (CNS). Studies show that multiple inflammatory mediators including cytokines, chemokines and prostaglandins are elevated in the Cerebrospinal Fluid (CSF) and in post-mortem brain tissues of patients with history of neuroinflammatory conditions as well as neurodegenerative disorders like Alzheimer's disease, Parkinson's disease and Multiple Sclerosis. The innate immunity mediators in the brain, namely microglia and astrocytes, express certain Pattern Recognition Receptors (PRRs), which are always on 'high-alert' for pathogens or other inflammatory triggers and participate in the assembly and activation of the inflammasome. The inflammasome orchestrates the activation of the precursors of proinflammatory caspases, which in turn, cleave the precursor forms of interleukin-1beta, IL-18 and IL-33 into their active forms; the secretion of which leads to a potent inflammatory response, and/or influences the release of toxins from glial and endothelial cells. Altered expression of inflammasome mediators can either promote or inhibit neurodegenerative processes. Therefore, modulating the inflammasome machinery seems a better combat strategy than summarily suppressing all inflammation in most neuroinflammatory conditions. In the current review we have surveyed the identified triggers and pathways of inflammasome activation and the following events which ultimately accomplish the innate inflammatory response in the CNS, with a goal to provide an analytical insight into disease pathogenesis that might provide cues for devising novel therapeutic strategies.

170 citations

Journal ArticleDOI
29 Feb 2012-PLOS ONE
TL;DR: A mechanism mediated by Reactive Oxygen Species (ROS) production and potassium efflux as the two danger signals that link JEV infection to caspase-1 activation resulting in subsequent IL-1β and IL-18 maturation is identified.
Abstract: Background Japanese Encephalitis virus (JEV) is a common cause of acute and epidemic viral encephalitis. JEV infection is associated with microglial activation resulting in the production of pro-inflammatory cytokines including Interleukin-1 β (IL-1β) and Interleukin-18 (IL-18). The Pattern Recognition Receptors (PRRs) and the underlying mechanism by which microglia identify the viral particle leading to the production of these cytokines is unknown. Methodology/Principal Findings For our studies, we have used murine model of JEV infection as well as BV-2 mouse microglia cell line. In this study, we have identified a signalling pathway which leads to the activation of caspase-1 as the key enzyme responsible for the maturation of both IL-1β and IL-18 in NACHT, LRR and PYD domains-containing protein-3 (NLRP3) dependent manner. Depletion of NLRP3 results in the reduction of caspase-1 activity and subsequent production of these cytokines. Conclusion/Significance Our results identify a mechanism mediated by Reactive Oxygen Species (ROS) production and potassium efflux as the two danger signals that link JEV infection to caspase-1 activation resulting in subsequent IL-1β and IL-18 maturation.

124 citations

Journal ArticleDOI
TL;DR: It is concluded that miR-155 modulates the neuroinflammatory response during JEV infection via negative regulation of SHIP1 expression, and is a potential therapeutic target to develop antivirals in JE and other brain disorders where inflammation plays a significant role in disease progression.
Abstract: MicroRNAs (miRNAs) are single-stranded small RNA molecules that regulate various cellular processes. miRNA 155 (miR-155) regulates various aspects of innate and adaptive immune responses and plays a key role in various viral infections and the resulting neuroinflammation. The present study evaluated the involvement of miR-155 in modulating Japanese encephalitis virus (JEV)-induced neuroinflammation. We observed that miR-155 expression was upregulated during JEV infection of mouse primary microglia, the BV-2 microglia cell line, and in both mouse and human brains. In vitro and in vivo knockdown of miR-155 minimized JEV-induced inflammatory responses. In the present study, we confirmed targeting of the Src homology 2-containing inositol phosphatase 1 (SHIP1) 3′ untranslated region (UTR) by miR-155 in the context of JEV infection. Inhibition of SHIP1 by miR-155 resulted in higher beta interferon (IFN-β) and proinflammatory cytokine production through activation of TANK-binding kinase 1 (TBK-1). Based on these observations, we conclude that miR-155 modulates the neuroinflammatory response during JEV infection via negative regulation of SHIP1 expression. Thus, modulation of miR-155 could be a novel strategy to regulate JEV-induced neuroinflammation. IMPORTANCE Japanese encephalitis virus (JEV), a member of the family Flaviviridae that causes Japanese encephalitis (JE), is the most common mosquito-borne encephalitis virus in the Asia-Pacific region. The disease is feared, as currently there are no specific antiviral drugs available. JEV targets the central nervous system, leading to high mortality and neurological and psychiatric sequelae in some of those who survive. The level of inflammation correlates well with the clinical outcome in patients. Recently, microRNA (miRNA), a single-stranded noncoding RNA, has been implicated in various brain disorders. The present study investigates the role of miRNA in JEV-induced neuroinflammation. Our results show that miRNA 155 (miR-155) targets the Src homology 2-containing inositol phosphatase 1 (SHIP1) protein and promotes inflammation by regulating the NF-κB pathway, increasing the expression of various proinflammatory cytokines and the antiviral response. Thus, miR-155 is a potential therapeutic target to develop antivirals in JE and other brain disorders where inflammation plays a significant role in disease progression.

104 citations

Journal ArticleDOI
TL;DR: The role of Krüppel-like factor 4 (Klf4) in microglia in mediating neuroinflammation in response to the bacterial endotoxin LPS is demonstrated and it is found that Klf4 can potentially interact with pNF-κB and is important for iNOS and Cox-2 promoter activity in vitro.
Abstract: Background Activation of microglia, the resident macrophages of the central nervous system (CNS), is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB) is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2) and other pro-inflammatory cytokines. Recent studies have focused on the role of Kruppel-like factor 4 (Klf4), one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation.

89 citations

Journal ArticleDOI
TL;DR: This study demonstrates involvement of miR‐29b in regulating JEV‐ induced microglial activation and in vitro knockdown resulted in significant over‐expression of tumor necrosis factor alpha‐induced protein 3, and subsequent decrease in nuclear translocation of pNF‐κB.
Abstract: Japanese encephalitis virus (JEV), a single-stranded RNA (ssRNA) virus, is the leading cause of encephalitis in Asia. Microglial activation is one of the key events in JEV-induced neuroinflammation. Although the various microRNAs (miRNAs) has been shown to regulate microglia activation during pathological conditions including neuroviral infections, till date, the involvement of miRNAs in JEV infection has not been evaluated. Hence, we sought to evaluate the possible role of miRNAs in mediating JEV-induced microglia activation. Initial screening revealed significant up-regulation of miR-29b in JEV-infected mouse microglial cell line (BV-2) and primary microglial cells. Furthermore, using bioinformatics tools, we identified tumor necrosis factor alpha-induced protein 3, a negative regulator of nuclear factor-kappa B signaling as a potential target of miR-29b. Interestingly, in vitro knockdown of miR-29b resulted in significant over-expression of tumor necrosis factor alpha-induced protein 3, and subsequent decrease in nuclear translocation of pNF-κB. JEV infection in BV-2 cell line elevated inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokine expression levels, which diminished after miR-29b knockdown. Collectively, our study demonstrates involvement of miR-29b in regulating JEV- induced microglial activation.

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources.
Abstract: There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.

935 citations

Journal ArticleDOI
TL;DR: The cellular and molecular basis of innate immunity in the CNS is reviewed and what is known about how outcomes of these interactions can lead to resolution of infection, neurodegeneration, or neural repair depending on the context is discussed.
Abstract: Immune responses in the CNS are common, despite its perception as a site of immune privilege. These responses can be mediated by resident microglia and astrocytes, which are innate immune cells without direct counterparts in the periphery. Furthermore, CNS immune reactions often take place in virtual isolation from the innate/adaptive immune interplay that characterizes peripheral immunity. However, microglia and astrocytes also engage in significant cross-talk with CNS-infiltrating T cells and other components of the innate immune system. Here we review the cellular and molecular basis of innate immunity in the CNS and discuss what is known about how outcomes of these interactions can lead to resolution of infection, neurodegeneration, or neural repair depending on the context.

828 citations

Journal ArticleDOI
TL;DR: The genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus, are explored.
Abstract: Increasing attention has been focused on understanding bacterial biofilms and this growth modality's relation to human disease. In this review we explore the genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus. In addition, we discuss diseases and host immune responses, along with current therapies associated with S. aureus biofilm infections and prevention strategies.

797 citations

Journal ArticleDOI
TL;DR: KLF4 was found to cooperate with Stat6 to induce an M2 genetic program and inhibit M1 targets via sequestration of coactivators required for NF-κB activation and mice bearing myeloid-specific deletion of KLF4 exhibited delayed wound healing and were predisposed to developing diet-induced obesity, glucose intolerance, and insulin resistance.
Abstract: Current paradigms suggest that two macrophage subsets, termed M1 and M2, are involved in inflammation and host defense. While the distinct functions of M1 and M2 macrophages have been intensively studied - the former are considered proinflammatory and the latter antiinflammatory - the determinants of their speciation are incompletely understood. Here we report our studies that identify Kruppel-like factor 4 (KLF4) as a critical regulator of macrophage polarization. Macrophage KLF4 expression was robustly induced in M2 macrophages and strongly reduced in M1 macrophages, observations that were recapitulated in human inflammatory paradigms in vivo. Mechanistically, KLF4 was found to cooperate with Stat6 to induce an M2 genetic program and inhibit M1 targets via sequestration of coactivators required for NF-κB activation. KLF4-deficient macrophages demonstrated increased proinflammatory gene expression, enhanced bactericidal activity, and altered metabolism. Furthermore, mice bearing myeloid-specific deletion of KLF4 exhibited delayed wound healing and were predisposed to developing diet-induced obesity, glucose intolerance, and insulin resistance. Collectively, these data identify KLF4 as what we believe to be a novel regulator of macrophage polarization.

619 citations

Journal ArticleDOI
TL;DR: Animal experiments robustly showed that peripheral inflammatory stimuli cause microglial activation and were associated with an increase in Toll-like receptor, tumor necrosis factor alpha, and interleukin 1 beta messenger ribonucleic acid (mRNA) expression or protein levels.
Abstract: Animal studies show that peripheral inflammatory stimuli may activate microglial cells in the brain implicating an important role for microglia in sepsis-associated delirium. We systematically reviewed animal experiments related to the effects of systemic inflammation on the microglial and inflammatory response in the brain. We searched PubMed between January 1, 1950 and December 1, 2013 and Embase between January 1, 1988 and December 1, 2013 for animal studies on the influence of peripheral inflammatory stimuli on microglia and the brain. Identified studies were systematically scored on methodological quality. Two investigators extracted independently data on animal species, gender, age, and genetic background; number of animals; infectious stimulus; microglial cells; and other inflammatory parameters in the brain, including methods, time points after inoculation, and brain regions. Fifty-one studies were identified of which the majority was performed in mice (n = 30) or in rats (n = 19). Lipopolysaccharide (LPS) (dose ranging between 0.33 and 200 mg/kg) was used as a peripheral infectious stimulus in 39 studies (76 %), and live or heat-killed pathogens were used in 12 studies (24 %). Information about animal characteristics such as species, strain, sex, age, and weight were defined in 41 studies (80 %), and complete methods of the disease model were described in 35 studies (68 %). Studies were also heterogeneous with respect to methods used to assess microglial activation; markers used mostly were the ionized calcium binding adaptor molecule-1 (Iba-1), cluster of differentiation 68 (CD68), and CD11b. After LPS challenge microglial activation was seen 6 h after challenge and remained present for at least 3 days. Live Escherichia coli resulted in microglial activation after 2 days, and heat-killed bacteria after 2 weeks. Concomitant with microglial response, inflammatory parameters in the brain were reviewed in 23 of 51 studies (45 %). Microglial activation was associated with an increase in Toll-like receptor (TLR-2 and TLR-4), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) messenger ribonucleic acid (mRNA) expression or protein levels. Animal experiments robustly showed that peripheral inflammatory stimuli cause microglial activation. We observed distinct differences in microglial activation between systemic stimulation with (supranatural doses) LPS and live or heat-killed bacteria.

598 citations