scispace - formally typeset
Search or ask a question
Author

Deepak Narayanan

Other affiliations: Microsoft
Bio: Deepak Narayanan is an academic researcher from Stanford University. The author has contributed to research in topics: Pipeline (computing) & Computer science. The author has an hindex of 14, co-authored 29 publications receiving 870 citations. Previous affiliations of Deepak Narayanan include Microsoft.

Papers
More filters
Proceedings ArticleDOI
27 Oct 2019
TL;DR: PipeDream is presented, a system that adds inter-batch pipelining to intra-batch parallelism to further improve parallel training throughput, helping to better overlap computation with communication and reduce the amount of communication when possible.
Abstract: DNN training is extremely time-consuming, necessitating efficient multi-accelerator parallelization. Current approaches to parallelizing training primarily use intra-batch parallelization, where a single iteration of training is split over the available workers, but suffer from diminishing returns at higher worker counts. We present PipeDream, a system that adds inter-batch pipelining to intra-batch parallelism to further improve parallel training throughput, helping to better overlap computation with communication and reduce the amount of communication when possible. Unlike traditional pipelining, DNN training is bi-directional, where a forward pass through the computation graph is followed by a backward pass that uses state and intermediate data computed during the forward pass. Naive pipelining can thus result in mismatches in state versions used in the forward and backward passes, or excessive pipeline flushes and lower hardware efficiency. To address these challenges, PipeDream versions model parameters for numerically correct gradient computations, and schedules forward and backward passes of different minibatches concurrently on different workers with minimal pipeline stalls. PipeDream also automatically partitions DNN layers among workers to balance work and minimize communication. Extensive experimentation with a range of DNN tasks, models, and hardware configurations shows that PipeDream trains models to high accuracy up to 5.3X faster than commonly used intra-batch parallelism techniques.

493 citations

Journal ArticleDOI
TL;DR: BLOOM as discussed by the authors is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total).
Abstract: Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.

407 citations

Journal ArticleDOI
TL;DR: The Holistic Evaluation of Language Models (HELM) as mentioned in this paper ) is a popular benchmark for language models, with 30 models evaluated on 16 core scenarios and 7 metrics, exposing important trade-offs.
Abstract: Language models (LMs) like GPT-3, PaLM, and ChatGPT are the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood. We present Holistic Evaluation of Language Models (HELM) to improve the transparency of LMs. LMs can serve many purposes and their behavior should satisfy many desiderata. To navigate the vast space of potential scenarios and metrics, we taxonomize the space and select representative subsets. We evaluate models on 16 core scenarios and 7 metrics, exposing important trade-offs. We supplement our core evaluation with seven targeted evaluations to deeply analyze specific aspects (including world knowledge, reasoning, regurgitation of copyrighted content, and generation of disinformation). We benchmark 30 LMs, from OpenAI, Microsoft, Google, Meta, Cohere, AI21 Labs, and others. Prior to HELM, models were evaluated on just 17.9% of the core HELM scenarios, with some prominent models not sharing a single scenario in common. We improve this to 96.0%: all 30 models are now benchmarked under the same standardized conditions. Our evaluation surfaces 25 top-level findings. For full transparency, we release all raw model prompts and completions publicly. HELM is a living benchmark for the community, continuously updated with new scenarios, metrics, and models https://crfm.stanford.edu/helm/latest/.

168 citations

Posted Content
TL;DR: MLPerf as discussed by the authors is an ML benchmark that overcomes three unique benchmarking challenges absent from other domains: optimizations that improve training throughput can increase the time to solution, training is stochastic and time-to-solution exhibits high variance.
Abstract: Machine learning (ML) needs industry-standard performance benchmarks to support design and competitive evaluation of the many emerging software and hardware solutions for ML. But ML training presents three unique benchmarking challenges absent from other domains: optimizations that improve training throughput can increase the time to solution, training is stochastic and time to solution exhibits high variance, and software and hardware systems are so diverse that fair benchmarking with the same binary, code, and even hyperparameters is difficult. We therefore present MLPerf, an ML benchmark that overcomes these challenges. Our analysis quantitatively evaluates MLPerf's efficacy at driving performance and scalability improvements across two rounds of results from multiple vendors.

163 citations

Posted Content
TL;DR: Experiments with five different DNNs on two different clusters show that PipeDream is up to 5x faster in time-to-accuracy compared to data-parallel training.
Abstract: PipeDream is a Deep Neural Network(DNN) training system for GPUs that parallelizes computation by pipelining execution across multiple machines. Its pipeline parallel computing model avoids the slowdowns faced by data-parallel training when large models and/or limited network bandwidth induce high communication-to-computation ratios. PipeDream reduces communication by up to 95% for large DNNs relative to data-parallel training, and allows perfect overlap of communication and computation. PipeDream keeps all available GPUs productive by systematically partitioning DNN layers among them to balance work and minimize communication, versions model parameters for backward pass correctness, and schedules the forward and backward passes of different inputs in round-robin fashion to optimize "time to target accuracy". Experiments with five different DNNs on two different clusters show that PipeDream is up to 5x faster in time-to-accuracy compared to data-parallel training.

146 citations


Cited by
More filters
Journal ArticleDOI
17 Jul 2019
TL;DR: AmoebaNet-A as mentioned in this paper modified the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes and achieved state-of-the-art performance.
Abstract: The effort devoted to hand-crafting neural network image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to neural network topologies, the image classifiers thus discovered have remained inferior to human-crafted ones. Here, we evolve an image classifier— AmoebaNet-A—that surpasses hand-designs for the first time. To do this, we modify the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes. Matching size, AmoebaNet-A has comparable accuracy to current state-of-the-art ImageNet models discovered with more complex architecture-search methods. Scaled to larger size, AmoebaNet-A sets a new state-of-theart 83.9% top-1 / 96.6% top-5 ImageNet accuracy. In a controlled comparison against a well known reinforcement learning algorithm, we give evidence that evolution can obtain results faster with the same hardware, especially at the earlier stages of the search. This is relevant when fewer compute resources are available. Evolution is, thus, a simple method to effectively discover high-quality architectures.

2,076 citations

Journal Article
TL;DR: A 540-billion parameter, densely activated, Transformer language model, which is called PaLM achieves breakthrough performance, outperforming the state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark.
Abstract: Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning , which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model (PaLM). We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.

1,429 citations

Proceedings ArticleDOI
08 Oct 2018
TL;DR: TVM as discussed by the authors is a compiler that exposes graph-level and operator-level optimizations to provide performance portability to deep learning workloads across diverse hardware back-ends, such as mobile phones, embedded devices, and accelerators.
Abstract: There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms - such as mobile phones, embedded devices, and accelerators (e.g., FPGAs, ASICs) - requires significant manual effort. We propose TVM, a compiler that exposes graph-level and operator-level optimizations to provide performance portability to deep learning workloads across diverse hardware back-ends. TVM solves optimization challenges specific to deep learning, such as high-level operator fusion, mapping to arbitrary hardware primitives, and memory latency hiding. It also automates optimization of low-level programs to hardware characteristics by employing a novel, learning-based cost modeling method for rapid exploration of code optimizations. Experimental results show that TVM delivers performance across hardware back-ends that are competitive with state-of-the-art, hand-tuned libraries for low-power CPU, mobile GPU, and server-class GPUs. We also demonstrate TVM's ability to target new accelerator back-ends, such as the FPGA-based generic deep learning accelerator. The system is open sourced and in production use inside several major companies.

991 citations