scispace - formally typeset
Search or ask a question
Author

Deepika Sharma

Bio: Deepika Sharma is an academic researcher from University of Basel. The author has contributed to research in topics: Graphene & Charged particle. The author has an hindex of 6, co-authored 15 publications receiving 695 citations. Previous affiliations of Deepika Sharma include University of Eastern Finland & Paul Scherrer Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors show that perfect absorption can be achieved in a system comprising a single lossy dielectric layer of thickness much smaller than the incident wavelength on an opaque substrate by utilizing the nontrivial phase shifts at interfaces between lossy media.
Abstract: We show that perfect absorption can be achieved in a system comprising a single lossy dielectric layer of thickness much smaller than the incident wavelength on an opaque substrate by utilizing the nontrivial phase shifts at interfaces between lossy media. This design is implemented with an ultra-thin (∼λ/65) vanadium dioxide (VO2) layer on sapphire, temperature tuned in the vicinity of the VO2 insulator-to-metal phase transition, leading to 99.75% absorption at λ = 11.6 μm. The structural simplicity and large tuning range (from ∼80% to 0.25% in reflectivity) are promising for thermal emitters, modulators, and bolometers.

536 citations

Journal ArticleDOI
22 Apr 2015-PLOS ONE
TL;DR: A multimodal imaging-based detailed anatomical model of the human head and neck, named “MIDA”, which offers also a detailed characterization of eyes, ears, and deep brain structures.
Abstract: Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

203 citations

Journal ArticleDOI
01 Apr 2012-Carbon
TL;DR: In this paper, a few-layer graphene synthesis on fused silica, with the help of pre-deposited copper films with thickness of few hundred nanometers, by using chemical vapor deposition technique was reported.

37 citations

Journal ArticleDOI
TL;DR: This work reports on establishing a nanofluidic system for reliable and contact-free trapping as well as manipulation of charged nano-objects using elastic polydimethylsiloxane (PDMS)-based materials, and takes advantage of the soft material properties of PDMS to actively tune the trapping strength and potential depth.
Abstract: Trapping and manipulation of nano-objects in solution are of great interest and have emerged in a plethora of fields spanning from soft condensed matter to biophysics and medical diagnostics. We report on establishing a nanofluidic system for reliable and contact-free trapping as well as manipulation of charged nano-objects using elastic polydimethylsiloxane (PDMS)-based materials. This trapping principle is based on electrostatic repulsion between charged nanofluidic walls and confined charged objects, called geometry-induced electrostatic (GIE) trapping. With gold nanoparticles as probes, we study the performance of the devices by measuring the stiffness and potential depths of the implemented traps, and compare the results with numerical simulations. When trapping 100 nm particles, we observe potential depths of up to Q≅24 k B T that provide stable trapping for many days. Taking advantage of the soft material properties of PDMS, we actively tune the trapping strength and potential depth by elastically reducing the device channel height, which boosts the potential depth up to Q~200 k B T, providing practically permanent contact-free trapping. Due to a high-throughput and low-cost fabrication process, ease of use, and excellent trapping performance, our method provides a reliable platform for research and applications in study and manipulation of single nano-objects in fluids. A method for the bulk manufacture of precision nanofluidic trapping devices could lead to applications in biophysics and medical diagnostics. Trapping and manipulating nanoscale objects in solutions has a range of applications such as disease diagnostics, drug discovery, cell biology and photonics. But fabricating stable devices for contact-free trapping of nano-objects in polydimethylsiloxane (PDMS), which has unique and advantageous physical and chemical properties that include flexibility, biocompatibility and transparency, has proved problematic. Michael Gerspach and colleagues from the groups of Thomas Pfohl at the University of Basel and of Yasin Ekinci at the Paul Scherrer Institut in Switzerland developed in a joint project a low-cost, high-throughput method for fabricating high-performance, electrostatic-based nanofluidic trapping devices from PDMS. Their cheap and flexible method avoids the need for cleanroom facilities and top-down processes, and could lead to the fabrication of more complex nanofluidic devices from a variety of new materials.

13 citations

Journal ArticleDOI
TL;DR: The motion of micron-sized catalytic polymer beads coated with thin film or nanoparticle form of Ni in aqueous H(2)O( 2) is reported herein and angular deviation in the motion is observed, with the deviations increasing with the strength of the field.
Abstract: The motion of micron-sized catalytic polymer beads coated with thin film or nanoparticle form of Ni in aqueous H2O2 is reported herein. In the absence of any magnetic field, the beads moved vertically upward in the medium, owing to sufficient bubbles deposited on them following catalytic decomposition of H2O2 by Ni. However, in the presence of an external magnetic field (perpendicular to the direction of motion), angular deviation in the motion is observed, with the deviations increasing with the strength of the field. The results are explained based on a model involving interaction of the beads with the external magnetic field.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations

Journal ArticleDOI
TL;DR: In this article, the basic physics and applications of planar metamaterials, often called metasurfaces, which are composed of optically thin and densely packed planar arrays of resonant or nearly resonant subwavelength elements, are reviewed.

1,047 citations

Journal ArticleDOI
TL;DR: A self-assembling plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm is reported, the most efficient and broadband plas Monte Carlo absorber reported to date.
Abstract: The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber–based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m−2). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

946 citations

Journal ArticleDOI
TL;DR: This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches to help the reader to appropriately design and conduct studies involving these brain stimulation techniques.

942 citations

Journal ArticleDOI
TL;DR: Materials whose optical properties can be reconfigured are crucial for photonic applications such as optical memories and phase-change materials offer such utility and recent progress is reviewed.
Abstract: Materials whose optical properties can be reconfigured are crucial for photonic applications such as optical memories. Phase-change materials offer such utility and here recent progress is reviewed. Phase-change materials (PCMs) provide a unique combination of properties. On transformation from the amorphous to crystalline state, their optical properties change drastically. Short optical or electrical pulses can be utilized to switch between these states, making PCMs attractive for photonic applications. We review recent developments in PCMs and evaluate the potential for all-photonic memories. Towards this goal, the progress and existing challenges to realize waveguides with stepwise adjustable transmission are presented. Colour-rendering and nanopixel displays form another interesting application. Finally, nanophotonic applications based on plasmonic nanostructures are introduced. They provide reconfigurable, non-volatile functionality enabling manipulation and control of light. Requirements and perspectives to successfully implement PCMs in emerging areas of photonics are discussed.

872 citations