scispace - formally typeset
Search or ask a question
Author

Delano Gobbi

Bio: Delano Gobbi is an academic researcher from National Institute for Space Research. The author has contributed to research in topics: Airglow & Gravity wave. The author has an hindex of 25, co-authored 84 publications receiving 1656 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a high-performance, all-sky imaging system has been used to obtain novel data on the morphology and dynamics of short-period (<1 hour) gravity waves at equatorial latitudes.
Abstract: A high-performance, all-sky imaging system has been used to obtain novel data on the morphology and dynamics of short-period (<1 hour) gravity waves at equatorial latitudes. Gravity waves imaged in the upper mesosphere and lower thermosphere were recorded in three nightglow emissions, the near-infrared OH emission, and the visible wavelength OI (557.7 nm) and Na (589.2 nm) emissions spanning the altitude range ∼80–100 km. The measurements were made from Alcantara, Brazil (2.3°S, 44.5°W), during the period August-October 1994 as part of the NASA/Instituto Nacional de Pesquisas Espaciais “Guara campaign”. Over 50 wave events were imaged from which a statistical study of the characteristics of equatorial gravity waves has been performed. The data were found to divide naturally into two groups. The first group corresponded to extensive, freely propagating (or ducted) gravity waves with observed periods ranging from 3.7 to 36.6 min, while the second group consisted of waves of a much smaller scale and transient nature. The later group exhibited a bimodal distribution for the observed periods at 5.18±0.26 min and 4.32±0.15 min, close to the local Brunt-Vaisala period and the acoustic cutoff period, respectively. In comparison, the larger-scale waves exhibited a clear tendency for their horizontal wavelengths to increase almost linearly with observed period. This trend was particularly well defined around the equinox and can be represented by a power-law relationship of the form λh=(3.1±0.5)τob1.06±0.10, where λh is measured in kilometers and τob in minutes. This result is in very good agreement with previous radar and passive optical measurements but differs significantly from the relationship λh ∝ τ1.5ob inferred from recent lidar studies. The larger-scale waves were also found to exhibit strong anisotropy in their propagation headings with the dominant direction of motion toward the-NE-ENE suggesting a preponderance for wave generation over the South American continent.

159 citations

Journal ArticleDOI
TL;DR: In this article, two airglow CCD imagers, located at Cariri (7.4° S, 36.5° W, geomag. 11° S) and near Brasilia (14.8°S, 47.6°W, geOMag. 10°S) were operated simultaneously and measured the equatorial ionospheric bubbles and their time evolution by monitoring the airglove OI 6300 intensity depletions.
Abstract: . During the Spread F Experiment campaign, under NASA Living with a Star (LWS) program, carried out in the South American Magnetic Equator region from 22 September to 8 November 2005, two airglow CCD imagers, located at Cariri (7.4° S, 36.5° W, geomag. 11° S) and near Brasilia (14.8° S, 47.6° W, geomag. 10° S) were operated simultaneously and measured the equatorial ionospheric bubbles and their time evolution by monitoring the airglow OI 6300 intensity depletions. Simultaneous observation of the mesospheric OH wave structures made it possible to investigate the relationship between the bubble formation in the ionosphere and the gravity wave activity at around 90 km. On the evening of 30 September 2005, comb-like OI 6300 depletions with a distance of ~130 km between the adjacent ones were observed. During the same period, a mesospheric gravity wave with a horizontal wavelength of ~130 km was observed. From the 17 nights of observation during the campaign period, there was a good correlation between the OI 6300 depletion distances and the gravity wave horizontal wavelengths in the mesosphere with a statistically significant level, suggesting a direct contribution of the mesospheric gravity wave to plasma bubble seeding in the equatorial ionosphere.

124 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical simulation of gravity wave propagation in a seasonally variable climatological wind field was performed, and it was determined that the observed anisotropy in the wave propagation directions can be attributed to a strong filtering of the waves in the middle atmosphere by stratospheric winds.
Abstract: horizontal phase speeds of up to � 80 m s � 1 . The large-scale ‘‘band’’ wave patterns (horizontal wavelength between 10 and 60 km) exhibited a clear seasonal dependence on the horizontal propagation direction, propagating toward the southeast during the summer months and toward the northwest during the winter. The direction of propagation was observed to change abruptly around the equinox period in mid March and at the end of September. Using a numerical simulation of gravity wave propagation in a seasonally variable climatological wind field, we have determined that the observed anisotropy in the wave propagation directions can be attributed to a strong filtering of the waves in the middle atmosphere by stratospheric winds. INDEX TERMS: 0310 Atmospheric Composition and Structure: Airglow and aurora; 3332 Meteorology and Atmospheric Dynamics: Mesospheric dynamics; 3360 Meteorology and Atmospheric Dynamics: Remote sensing; KEYWORDS: airglow, winds, gravity waves, wind filtering, imager

110 citations

Journal ArticleDOI
TL;DR: In this paper, a 3.5-day Ultra Fast Kelvin (UFK) wave was observed in the equatorial ionosphere during the period from March 1 to 11, 2005, which is the first report of clear evidence of propagation of a UFK wave from the stratosphere to the ionosphere.
Abstract: [1] In the equatorial atmosphere, oscillations with periods of 3 to 4 days have been observed in the meteor radar zonal wind at Cariri (7.4°S, 36.5°W), in the ionospheric minimum virtual height h'F and the maximum critical frequency foF2 at Fortaleza (3.9°S, 38.4°W), and in the TIMED/SABER satellite temperature data in the stratosphere-mesosphere. Wavelet analyses of these time series reveal that the 3–4-day oscillation was observed for all of these data during the period from March 1 to 11, 2005. From the characteristics of the downward phase propagation (wavelength of ∼40 km), longitudinal and latitudinal extension, we conclude that this oscillation must be a 3.5–day Ultra Fast Kelvin (UFK) wave. This is the first report of clear evidence of propagation of a UFK wave from the stratosphere to the ionosphere. The UFK wave could have an important role in the day-to-day variability of the equatorial ionosphere evening uplift.

71 citations

Journal ArticleDOI
TL;DR: In this article, bottom-type spread F events were observed in the south American equatorial region by a VHF coherent radar and an ionosonde at Sao Luis (2.5°S, 44.3°W).
Abstract: [1] Bottom-type spread F events were observed in the south American equatorial region by a VHF coherent radar and an ionosonde at Sao Luis (2.5°S, 44.3°W), an ionosonde at Fortaleza (3.9°S, 38.4° W) and an airglow OI 630.0 nm imager at Cariri (7.4°S, 36.5°W) and Brasilia (14.8°S, 47.6°W). In the evening of September 30, 2005, a long duration (∼70 minutes) bottom side scattering layer, confined in a narrow height region, was observed. At the same time all-sky imager observed sinusoidal intensity depletions in the zonal plane extending more than 1500 km and elongated along the magnetic meridian. No strong spread F structures developed during the period. Subsequently well developed plasma bubbles were observed. This suggests that the observed bottom-type spread F is an initial phase of the plasma bubbles. We report, for the first time, longitudinal and latitudinal extension of the bottom-type spread F as diagnosed by optical imagers.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape are discussed.
Abstract: [1] Atmospheric gravity waves have been a subject of intense research activity in recent years because of their myriad effects and their major contributions to atmospheric circulation, structure, and variability. Apart from occasionally strong lower-atmospheric effects, the major wave influences occur in the middle atmosphere, between ∼ 10 and 110 km altitudes because of decreasing density and increasing wave amplitudes with altitude. Theoretical, numerical, and observational studies have advanced our understanding of gravity waves on many fronts since the review by Fritts [1984a]; the present review will focus on these more recent contributions. Progress includes a better appreciation of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape. Recent studies have also expanded dramatically our understanding of gravity wave influences on the large-scale circulation and the thermal and constituent structures of the middle atmosphere. These advances have led to a number of parameterizations of gravity wave effects which are enabling ever more realistic descriptions of gravity wave forcing in large-scale models. There remain, nevertheless, a number of areas in which further progress is needed in refining our understanding of and our ability to describe and predict gravity wave influences in the middle atmosphere. Our view of these unknowns and needs is also offered.

2,206 citations

Journal ArticleDOI
TL;DR: In this article, the authors model the coupling of both circular (local) and plane wave (nonlocal) gravity waves to the bottomside F layer as a mechanism for triggering equatorial plasma bubbles, and support the hypothesis that nonplane gravity waves can more strongly couple to the F layer than plane gravity waves.
Abstract: [1] The Naval Research Laboratory three-dimensional simulation code SAMI3/ESF is used to study the response of the postsunset ionosphere to circular gravity waves. We model the coupling of both circular (local) and plane wave (nonlocal) gravity waves to the bottomside F layer as a mechanism for triggering equatorial plasma bubbles. Results support the hypothesis that nonplane gravity waves can more strongly couple to the F layer than plane gravity waves. Results also show that the coupling of the seed wave to the F layer depends on the (nonlocal) growth rate and the local electron density at the position of the seed wave.

831 citations

Journal ArticleDOI
TL;DR: In this paper, the role of eastward and upward propagating fast (FK) and ultrafast Kelvin (UFK) waves in the day-to-day variability of equatorial evening prereversal vertical drift and post sunset generation of spread F/plasma bubble irregularities was investigated.
Abstract: In this paper, we investigate the role of eastward and upward propagating fast (FK) and ultrafast Kelvin (UFK) waves in the day-to-day variability of equatorial evening prereversal vertical drift and post sunset generation of spread F/plasma bubble irregularities. Meteor wind data from Cariri and Cachoeira Paulista (Brazil) and medium frequency (MF) radar wind data from Tirunelveli (India) are analyzed together with Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) temperature in the 40- to 100-km region to characterize the zonal and vertical propagations of these waves. Also analyzed are the F region evening vertical drift and spread F (ESF) development features as diagnosed by Digisonde (Lowell Digisonde International, LLC, Lowell, MA, USA) operated at Fortaleza and Sao Luis in Brazil. The SABER temperature data permitted determination of the upward propagation characteristics of the FK (E1) waves with propagation speed in the range of 4 km/day. The radar mesosphere and lower thermosphere (MLT) winds in the widely separated longitude sectors have yielded the eastward phase velocity of both the FK and UFK waves. The vertical propagation of these waves cause strong oscillation in the F region evening prereversal vertical drift, observed for the first time at both FK and UFK periodicities. A delay of a few (approximately 10) days is observed in the F region vertical drift perturbation with respect to the corresponding FK/UFK zonal wind oscillations, or temperature oscillations in the MLT region, which has permitted a direct identification of the sunset electrodynamic coupling process as being responsible for the generation of the FK/UFK-induced vertical drift oscillation. The vertical drift oscillations are found to cause significant modulation in the spread F/plasma bubble irregularity development. The overall results highlight the role of FK/UFK waves in the day-to-day variability of the ESF in its occurrence season.

319 citations

Journal ArticleDOI
TL;DR: The current state of knowledge for the biospace in which life operates on Earth is reviewed and discussed in a planetary context, highlighting knowledge gaps and areas of opportunity.
Abstract: Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.

298 citations

Journal ArticleDOI
TL;DR: In this article, a review of long-term trends in the temperature of the region from 50 to 100 km is made on the basis of the available datasets and model calculations, and important uncertainly factors are discussed.
Abstract: In recent times it has become increasingly clear that releases of trace gases from human activity have a potential for causing change in the upper atmosphere. However, our knowledge of systematic changes and trends in the temperature of the mesosphere and lower thermosphere is relatively limited compared to the Earths lower atmosphere, and not much effort has been made to synthesize these results so far. In this article, a comprehensive review of long-term trends in the temperature of the region from 50 to 100 km is made on the basis of the available up-to-date understanding of measurements and model calculations. An objective evaluation of the available data sets is attempted, and important uncertainly factors are discussed. Some natural variability factors, which are likely to play a role in modulating temperature trends, are also briefly touched upon. There are a growing number of experimental results centered on, or consistent with, zero temperature trend in the mesopause region (80–100 km). The most reliable data sets show no significant trend but an uncertainty of at least 2 K/decade. On the other hand, a majority of studies indicate negative trends in the lower and middle mesosphere with an amplitude of a few degrees (2–3 K) per decade. In tropical latitudes the cooling trend increases in the upper mesosphere. The most recent general circulation models indicate increased cooling closer to both poles in the middle mesosphere and a decrease in cooling toward the summer pole in the upper mesosphere. Quantitatively, the simulated cooling trend in the middle mesosphere produced only by CO 2 increase is usually below the observed level. However, including other greenhouse gases and taking into account a “thermal shrinking” of the upper atmosphere result in a cooling of a few degrees per decade. This is close to the lower limit of the observed nonzero trends. In the mesopause region, recent model simulations produce trends, usually below 1 K/decade, that appear to be consistent with most observations in this region

264 citations