scispace - formally typeset
D

Demetrios N. Christodoulides

Researcher at University of Central Florida

Publications -  753
Citations -  60613

Demetrios N. Christodoulides is an academic researcher from University of Central Florida. The author has contributed to research in topics: Nonlinear system & Diffraction. The author has an hindex of 100, co-authored 704 publications receiving 51093 citations. Previous affiliations of Demetrios N. Christodoulides include King Abdulaziz University & Princeton University.

Papers
More filters
Journal ArticleDOI

Observation of parity–time symmetry in optics

TL;DR: In this paper, the authors report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential, and observe both spontaneous PT symmetry breaking and power oscillations violating left-right symmetry.
Journal ArticleDOI

Observation of PT-Symmetry Breaking in Complex Optical Potentials

TL;DR: This work demonstrates experimentally passive PT-symmetry breaking within the realm of optics, which leads to a loss induced optical transparency in specially designed pseudo-Hermitian guiding potentials.
Journal ArticleDOI

Observation of accelerating Airy beams.

TL;DR: In this paper, the first observation of Airy optical beams has been reported in both one-and two-dimensional configurations, and they exhibit unusual features such as the ability to remain diffraction-free over long distances while they tend to freely accelerate during propagation.
Journal ArticleDOI

Non-Hermitian physics and PT symmetry

TL;DR: In this paper, the interplay between parity-time symmetry and non-Hermitian physics in optics, plasmonics and optomechanics has been explored both theoretically and experimentally.
Journal ArticleDOI

Parity–time synthetic photonic lattices

TL;DR: The experimental observation of light transport in large-scale temporal lattices that are parity–time symmetric is reported and it is demonstrated that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points.