Author
Deming Chen
Other affiliations: Indiana University – Purdue University Indianapolis, Urbana University, University of Pittsburgh ...read more
Bio: Deming Chen is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: High-level synthesis & Field-programmable gate array. The author has an hindex of 43, co-authored 289 publications receiving 7291 citations. Previous affiliations of Deming Chen include Indiana University – Purdue University Indianapolis & Urbana University.
Papers published on a yearly basis
Papers
More filters
18 Jun 2018
TL;DR: CSRNet as discussed by the authors is composed of two major components: a convolutional neural network (CNN) as the front-end for 2D feature extraction and a dilated CNN for the back-end, which uses dilated kernels to deliver larger reception fields and to replace pooling operations.
Abstract: We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested scenes and perform accurate count estimation as well as present high-quality density maps. The proposed CSRNet is composed of two major components: a convolutional neural network (CNN) as the front-end for 2D feature extraction and a dilated CNN for the back-end, which uses dilated kernels to deliver larger reception fields and to replace pooling operations. CSRNet is an easy-trained model because of its pure convolutional structure. We demonstrate CSRNet on four datasets (ShanghaiTech dataset, the UCF_CC_50 dataset, the WorldEXPO'10 dataset, and the UCSD dataset) and we deliver the state-of-the-art performance. In the ShanghaiTech Part_B dataset, CSRNet achieves 47.3% lower Mean Absolute Error (MAE) than the previous state-of-the-art method. We extend the targeted applications for counting other objects, such as the vehicle in TRANCOS dataset. Results show that CSRNet significantly improves the output quality with 15.4% lower MAE than the previous state-of-the-art approach.
1,120 citations
23 Jan 2019
TL;DR: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative; results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
639 citations
01 Sep 1989
TL;DR: A methodology for measuring the performance of supercomputers, including 13 Fortran programs that total over 50,000 lines of source code, and a set of guidelines that allow portability to several types of machines are presented.
Abstract: This report presents a methodology for measuring the performance of supercomputers. It includes 13 Fortran programs that total over 50,000 lines of source code. They represent applications in several areas of engi neering and scientific computing, and in many cases the codes are currently being used by computational re search and development groups. We also present the PERFECT Fortran standard, a set of guidelines that allow portability to several types of machines. Furthermore, we present some performance measures and a method ology for recording and sharing results among diverse users on different machines. The results presented in this paper should not be used to compare machines, except in a preliminary sense. Rather, they are presented to show how the methodology has been applied, and to encourage others to join us in this effort. The results should be regarded as the first step toward our objec tive, which is to develop a publicly accessible data base of performance information of this type.
489 citations
05 Nov 2018
TL;DR: DNNBuilder, an automatic design space exploration tool to generate optimized parallelism guidelines by considering external memory access bandwidth, data reuse behaviors, FPGA resource availability, and DNN complexity, is designed and demonstrated.
Abstract: Building a high-performance EPGA accelerator for Deep Neural Networks (DNNs) often requires RTL programming, hardware verification, and precise resource allocation, all of which can be time-consuming and challenging to perform even for seasoned FPGA developers. To bridge the gap between fast DNN construction in software (e.g., Caffe, TensorFlow) and slow hardware implementation, we propose DNNBuilder for building high-performance DNN hardware accelerators on FPGAs automatically. Novel techniques are developed to meet the throughput and latency requirements for both cloud- and edge-devices. A number of novel techniques including high-quality RTL neural network components, a fine-grained layer-based pipeline architecture, and a column-based cache scheme are developed to boost throughput, reduce latency, and save FPGA on-chip memory. To address the limited resource challenge, we design an automatic design space exploration tool to generate optimized parallelism guidelines by considering external memory access bandwidth, data reuse behaviors, FPGA resource availability, and DNN complexity. DNNBuilder is demonstrated on four DNNs (Alexnet, ZF, VGG16, and YOLO) on two FPGAs (XC7Z045 and KU115) corresponding to the edge- and cloud-computing, respectively. The fine-grained layer-based pipeline architecture and the column-based cache scheme contribute to 7.7x and 43x reduction of the latency and BRAM utilization compared to conventional designs. We achieve the best performance (up to 5.15x faster) and efficiency (up to 5.88x more efficient) compared to published FPGA-based classification-oriented DNN accelerators for both edge and cloud computing cases. We reach 4218 GOPS for running object detection DNN which is the highest throughput reported to the best of our knowledge. DNNBuilder can provide millisecond-scale real-time performance for processing HD video input and deliver higher efficiency (up to 4.35x) than the GPU-based solutions.
244 citations
23 Feb 2003
TL;DR: A mixed-level FPGA power model that combines switch-level models for interconnects and macromodels for LUTs and a tool that automatically generates a back-annotated gate-level netlist with post-layout extracted capacitances and delays is developed.
Abstract: This paper presents a flexible FPGA architecture evaluation framework, named fpgaEVA-LP, for power efficiency analysis of LUT-based FPGA architectures. Our work has several contributions: (i) We develop a mixed-level FPGA power model that combines switch-level models for interconnects and macromodels for LUTs; (ii) We develop a tool that automatically generates a back-annotated gate-level netlist with post-layout extracted capacitances and delays; (iii) We develop a cycle-accurate power simulator based on our power model. It carries out gate-level simulation under real delay model and is able to capture glitch power; (iv) Using the framework fpgaEVA-LP, we study the power efficiency of FPGAs, in 0.10um technology, under various settings of architecture parameters such as LUT sizes, cluster sizes and wire segmentation schemes and reach several important conclusions. We also present the detailed power consumption distribution among different FPGA components and shed light on the potential opportunities of power optimization for future FPGA designs (e.g., ≤: 0.10um technology).
196 citations
Cited by
More filters
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
01 Sep 1991
TL;DR: A new set of benchmarks has been developed for the performance evaluation of highly parallel supercom puters that mimic the computation and data move ment characteristics of large-scale computational fluid dynamics applications.
Abstract: A new set of benchmarks has been developed for the performance evaluation of highly parallel supercom puters. These consist of five "parallel kernel" bench marks and three "simulated application" benchmarks. Together they mimic the computation and data move ment characteristics of large-scale computational fluid dynamics applications. The principal distinguishing feature of these benchmarks is their "pencil and paper" specification-all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional bench- marking approaches on highly parallel systems are avoided.
2,246 citations
22 Feb 2015
TL;DR: This work implements a CNN accelerator on a VC707 FPGA board and compares it to previous approaches, achieving a peak performance of 61.62 GFLOPS under 100MHz working frequency, which outperform previous approaches significantly.
Abstract: Convolutional neural network (CNN) has been widely employed for image recognition because it can achieve high accuracy by emulating behavior of optic nerves in living creatures. Recently, rapid growth of modern applications based on deep learning algorithms has further improved research and implementations. Especially, various accelerators for deep CNN have been proposed based on FPGA platform because it has advantages of high performance, reconfigurability, and fast development round, etc. Although current FPGA accelerators have demonstrated better performance over generic processors, the accelerator design space has not been well exploited. One critical problem is that the computation throughput may not well match the memory bandwidth provided an FPGA platform. Consequently, existing approaches cannot achieve best performance due to under-utilization of either logic resource or memory bandwidth. At the same time, the increasing complexity and scalability of deep learning applications aggravate this problem. In order to overcome this problem, we propose an analytical design scheme using the roofline model. For any solution of a CNN design, we quantitatively analyze its computing throughput and required memory bandwidth using various optimization techniques, such as loop tiling and transformation. Then, with the help of rooine model, we can identify the solution with best performance and lowest FPGA resource requirement. As a case study, we implement a CNN accelerator on a VC707 FPGA board and compare it to previous approaches. Our implementation achieves a peak performance of 61.62 GFLOPS under 100MHz working frequency, which outperform previous approaches significantly.
1,893 citations
01 Jan 2017
1,687 citations