scispace - formally typeset
Search or ask a question
Author

Demirkus

Bio: Demirkus is an academic researcher. The author has contributed to research in topics: Fingerprint. The author has an hindex of 1, co-authored 1 publications receiving 288 citations.
Topics: Fingerprint

Papers
More filters
Journal ArticleDOI
TL;DR: A hierarchical matching system that utilizes features at all the three levels extracted from 1,000 ppi fingerprint scans, including pores and ridge contours, is proposed, which shows that level 3 features carry significant discriminatory information.
Abstract: Fingerprint friction ridge details are generally described in a hierarchical order at three different levels, namely, level 1 (pattern), level 2 (minutia points), and level 3 (pores and ridge contours). Although latent print examiners frequently take advantage of level 3 features to assist in identification, automated fingerprint identification systems (AFIS) currently rely only on level 1 and level 2 features. In fact, the Federal Bureau of Investigation's (FBI) standard of fingerprint resolution for AFIS is 500 pixels per inch (ppi), which is inadequate for capturing level 3 features, such as pores. With the advances in fingerprint sensing technology, many sensors are now equipped with dual resolution (500 ppi/1,000 ppi) scanning capability. However, increasing the scan resolution alone does not necessarily provide any performance improvement in fingerprint matching, unless an extended feature set is utilized. As a result, a systematic study to determine how much performance gain one can achieve by introducing level 3 features in AFIS is highly desired. We propose a hierarchical matching system that utilizes features at all the three levels extracted from 1,000 ppi fingerprint scans. Level 3 features, including pores and ridge contours, are automatically extracted using Gabor filters and wavelet transform and are locally matched using the iterative closest point (ICP) algorithm. Our experiments show that level 3 features carry significant discriminatory information. There is a relative reduction of 20 percent in the equal error rate (EER) of the matching system when level 3 features are employed in combination with level 1 and 2 features. This significant performance gain is consistently observed across various quality fingerprint images

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new approach to improve the performance of finger-vein identification systems presented in the literature is presented and two new score-level combinations are developed and investigated, i.e., holistic and nonlinear fusion.
Abstract: This paper presents a new approach to improve the performance of finger-vein identification systems presented in the literature. The proposed system simultaneously acquires the finger-vein and low-resolution fingerprint images and combines these two evidences using a novel score-level combination strategy. We examine the previously proposed finger-vein identification approaches and develop a new approach that illustrates it superiority over prior published efforts. The utility of low-resolution fingerprint images acquired from a webcam is examined to ascertain the matching performance from such images. We develop and investigate two new score-level combinations, i.e., holistic and nonlinear fusion, and comparatively evaluate them with more popular score-level fusion approaches to ascertain their effectiveness in the proposed system. The rigorous experimental results presented on the database of 6264 images from 156 subjects illustrate significant improvement in the performance, i.e., both from the authentication and recognition experiments.

531 citations

Journal ArticleDOI
TL;DR: It is shown that pretrained CNNs can yield the state-of-the-art results with no need for architecture or hyperparameter selection, and data set augmentation is used to increase the classifiers performance, not only for deep architectures but also for shallow ones.
Abstract: With the growing use of biometric authentication systems in the recent years, spoof fingerprint detection has become increasingly important. In this paper, we use convolutional neural networks (CNNs) for fingerprint liveness detection. Our system is evaluated on the data sets used in the liveness detection competition of the years 2009, 2011, and 2013, which comprises almost 50 000 real and fake fingerprints images. We compare four different models: two CNNs pretrained on natural images and fine-tuned with the fingerprint images, CNN with random weights, and a classical local binary pattern approach. We show that pretrained CNNs can yield the state-of-the-art results with no need for architecture or hyperparameter selection. Data set augmentation is used to increase the classifiers performance, not only for deep architectures but also for shallow ones. We also report good accuracy on very small training sets (400 samples) using these large pretrained networks. Our best model achieves an overall rate of 97.1% of correctly classified samples—a relative improvement of 16% in test error when compared with the best previously published results. This model won the first prize in the fingerprint liveness detection competition 2015 with an overall accuracy of 95.5%.

314 citations

Journal ArticleDOI
TL;DR: The achieved experimental results from the proposed system using contactless palm dorsal-hand vein images are promising and suggest more user friendly alternative for user identification.
Abstract: This paper presents a new approach to authenticate individuals using triangulation of hand vein images and simultaneous extraction of knuckle shape information. The proposed method is fully automated and employs palm dorsal hand vein images acquired from the low-cost, near infrared, contactless imaging. The knuckle tips are used as key points for the image normalization and extraction of region of interest. The matching scores are generated in two parallel stages: (i) hierarchical matching score from the four topologies of triangulation in the binarized vein structures and (ii) from the geometrical features consisting of knuckle point perimeter distances in the acquired images. The weighted score level combination from these two matching scores are used to authenticate the individuals. The achieved experimental results from the proposed system using contactless palm dorsal-hand vein images are promising (equal error rate of 1.14%) and suggest more user friendly alternative for user identification.

307 citations

Journal ArticleDOI
TL;DR: The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
Abstract: Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.

292 citations

Journal ArticleDOI
TL;DR: This paper develops a computationally attractive and effective alternative to characterize the automatically segmented ear images using a pair of log-Gabor filters and presents a completely automated approach for the robust segmentation of curved region of interest using morphological operators and Fourier descriptors.

256 citations