scispace - formally typeset
Search or ask a question
Author

Dengyu Pan

Other affiliations: Nanjing University
Bio: Dengyu Pan is an academic researcher from Shanghai University. The author has contributed to research in topics: Graphene & Quantum dot. The author has an hindex of 41, co-authored 105 publications receiving 8584 citations. Previous affiliations of Dengyu Pan include Nanjing University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work reports on a novel and simple hydrothermal approach for the cutting of GSs into surface-functionalized GQDs, which were found to exhibit bright blue photoluminescence (PL), which has never been observed in GSs and GNRs owing to their large lateral sizes.
Abstract: 2010 WILEY-VCH Verlag Gm Graphene-based materials are promising building blocks for future nanodevices owing to their superior electronic, thermal, and mechanical properties as well as their chemical stability. However, currently available graphene-based materials produced by typical physical and chemical routes, including micromechanical cleavage, reduction of exfoliated graphene oxide (GO), and solvothermal synthesis, are generally micrometer-sized graphene sheets (GSs), which limits their direct application in nanodevices. In this context, it has become urgent to develop effective routes for cutting large GSs into nanometer-sized pieces with a well-confined shape, such as graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). Theoretical and experimental studies have shown that narrow GNRs (width less than ca. 10 nm) exhibit substantial quantum confinement and edge effects that render GNRs semiconducting. By comparison, GQDs possess strong quantum confinement and edge effects when their sizes are down to 100 nm. If their sizes are reduced to ca. 10 nm, comparable with the widths of semiconducting GNRs, the two effects will become more pronounced and, hence, induce new physical properties. Up to now, nearly all experimental work on GNRs and GQDs has focused on their electron transportation properties. Little work has been done on the optical properties that are directly associated with the quantum confinement and/or edge effects. Most GNRand GQD-based electronic devices have been fabricated by lithography techniques, which can realize widths and diameters down to ca. 20 nm. This physical approach, however, is limited by the need for expensive equipment and especially by difficulties in obtaining smooth edges. Alternative chemical routes can overcome these drawbacks. Moreover, surface functionalization can be realized easily. Li et al. first reported a chemical route to functionalized and ultrasmooth GNRs with widths ranging from 50 nm to sub-10 nm. Very recently, Kosynkin et al. reported a simple solution-based oxidative process for producing GNRs by lengthwise cutting and unraveling of multiwalled carbon nanotube (CNT) side walls. Yet, no chemical routes have been reported so far for preparing functionalized GQDs with sub-10 nm sizes. Here, we report on a novel and simple hydrothermal approach for the cutting of GSs into surface-functionalized GQDs (ca. 9.6-nm average diameter). The functionalized GQDs were found to exhibit bright blue photoluminescence (PL), which has never been observed in GSs and GNRs owing to their large lateral sizes. The blue luminescence and new UV–vis absorption bands are directly induced by the large edge effect shown in the ultrafine GQDs. The starting material was micrometer-sized rippled GSs obtained by thermal reduction of GO sheets. Figure 1a shows a typical transmission electron microscopy (TEM) image of the pristine GSs. Their (002) interlayer spacing is 3.64 A (Fig. 1c), larger than that of bulk graphite (3.34 A). Before the hydrothermal treatment, the GSs were oxidized in concentrated H2SO4 and HNO3. After the oxidization treatment the GSs became slightly smaller (50 nm–2mm) and the (002) spacing slightly increased to 3.85 A (Fig. 1c). During the oxidation, oxygen-containing functional groups, including C1⁄4O/COOH, OH, and C O C, were introduced at the edge and on the basal plane, as shown in the Fourier transform infrared (FTIR) spectrum (Fig. 1d). The presence of these groups makes the GSs soluble in water. A series of more marked changes took place after the hydrothermal treatment of the oxidized GSs at 200 8C. First, the (002) spacing was reduced to 3.43 A (Fig. 1c), very close to that of bulk graphite, indicating that deoxidization occurs during the hydrothermal process. The deoxidization is further confirmed by the changes in the FTIR and C 1s X-ray photoelectron spectroscopy (XPS) spectra. After the hydrothermal treatment, the strongest vibrational absorption band of C1⁄4O/COOH at 1720 cm 1 became very weak and the vibration band of epoxy groups at 1052 cm 1 disappeared (Fig. 1d). In the XPS C 1s spectra of the oxidized and hydrothermally reduced GSs (Fig. 2a), the signal at 289 eV assigned to carboxyl groups became weak after the hydrothermal treatment, whereas the sp carbon peak at 284.4 eV was almost unchanged. Figure 2b shows the Raman spectrum of the reduced GSs. A G band at 1590 cm 1 and a D band at 1325 cm 1 were observed with a large intensity ratio ID/IG of 1.26. Second, the size of the GSs decreased dramatically and ultrafine GQDswere isolated by a dialysis process. Figure 3 shows typical TEM and atomic force microscopy (AFM) images of the GQDs. Their diameters are mainly distributed in the range of 5–13 nm (9.6 nm average diameter). Their topographic heights are mostly between 1 and 2 nm, similar to those observed in functionalized GNRs with 1–3 layers. More than 85% of the GQDs consist of 1–3 layers.

2,484 citations

Journal ArticleDOI
Dengyu Pan1, Song Wang1, Bing Zhao1, Minghong Wu1, Haijiao Zhang1, Yong Wang1, Zheng Jiao1 
TL;DR: Li et al. as discussed by the authors reported that highly disordered graphene nanosheets can find promising applications in high-capacity Li ion batteries because of their exceptionally high reversible capacities and good cyclic stability.
Abstract: Graphene has aroused intensive interest because of its unique structure, superior properties, and various promising applications. Graphene nanostructures with significant disorder and defects have been considered to be poor materials because disorder and defects lower their electrical conductivity. In this paper, we report that highly disordered graphene nanosheets can find promising applications in high-capacity Li ion batteries because of their exceptionally high reversible capacities (794−1054 mA h/g) and good cyclic stability. To understand the Li storage mechanism of graphene nanosheets, we have prepared graphene nanosheets with structural parameters tunable via different reduction methods including hydrazine reduction, low-temperature pyrolysis, and electron beam irradiation. The effects of these parameters on Li storage properties were investigated systematically. A key structural parameter, Raman intensity ratio of D bands to G bands, has been identified to evaluate the reversible capacity. The gr...

944 citations

Journal ArticleDOI
TL;DR: The gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions is reported, which bestowed with excellent optical properties such as brightexcitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability.
Abstract: Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

743 citations

Journal ArticleDOI
Dengyu Pan1, Jingchun Zhang1, Zhen Li1, Chao Wu1, Xiumei Yan1, Minghong Wu1 
TL;DR: A unique emission that is strongly dependent on pH, solvent, spin, and excitation wavelength was observed in high blue luminescent carbon nanoparticles prepared by a one-step pyrolytic route from ethylenediamine-tetraacetic acid salts.

554 citations

Journal ArticleDOI
TL;DR: Water-soluble and well-crystallized graphene quantum dots with lateral size about 3.0 nm were fabricated by a hydrothermal cutting method and their photoluminescence (PL) properties as well as the potential for bioimaging were demonstrated as mentioned in this paper.
Abstract: Water-soluble and well-crystallized graphene quantum dots with lateral size about 3.0 nm were fabricated by a hydrothermal cutting method and their photoluminescence (PL) properties as well as the potential for bioimaging were demonstrated.

422 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
01 Aug 2012-Carbon
TL;DR: In this paper, the state-of-the-art status of the reduction of GO on both techniques and mechanisms is reviewed, where the reduction process can partially restore the structure and properties of graphene.

4,187 citations

Journal ArticleDOI
TL;DR: This Review summarize recent advances in the synthesis and characterization of C-dots and speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
Abstract: Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.

3,991 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: In this article, a review of mostly recent activities can be found, with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972.
Abstract: Multiferroic magnetoelectric materials, which simultaneously exhibit ferroelectricity and ferromagnetism, have recently stimulated a sharply increasing number of research activities for their scientific interest and significant technological promise in the novel multifunctional devices. Natural multiferroic single-phase compounds are rare, and their magnetoelectric responses are either relatively weak or occurs at temperatures too low for practical applications. In contrast, multiferroic composites, which incorporate both ferroelectric and ferri-/ferromagnetic phases, typically yield giant magnetoelectric coupling response above room temperature, which makes them ready for technological applications. This review of mostly recent activities begins with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972. In such composites the magnetoelectric effect is generated as a product property of a magnetostrictive and a piezoelectric substance. A...

3,288 citations