scispace - formally typeset
Search or ask a question
Author

Deniz Ertas

Bio: Deniz Ertas is an academic researcher from ExxonMobil. The author has contributed to research in topics: Probability distribution & Kerogen. The author has an hindex of 26, co-authored 61 publications receiving 3181 citations. Previous affiliations of Deniz Ertas include Harvard University & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A systematic, large-scale simulation study of granular media in two and three dimensions, investigating the rheology of cohesionless granular particles in inclined plane geometries, finds that a steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction and inelastic collisions is found.
Abstract: We have performed a systematic, large-scale simulation study of granular media in two and three dimensions, investigating the rheology of cohesionless granular particles in inclined plane geometries, i.e., chute flows. We find that over a wide range of parameter space of interaction coefficients and inclination angles, a steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction and inelastic collisions. In this regime, the bulk packing fraction (away from the top free surface and the bottom plate boundary) remains constant as a function of depth z, of the pile. The velocity profile in the direction of flow vx(z) scales with height of the pile H, according to vx(z) proportional to H(alpha), with alpha=1.52+/-0.05. However, the behavior of the normal stresses indicates that existing simple theories of granular flow do not capture all of the features evidenced in the simulations.

853 citations

01 Mar 2002
TL;DR: This work studies static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which they vary particle hardness, friction coefficient, and coefficient of restitution.
Abstract: We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that depend on system parameters and construction history. Instead of immediately dropping to four, the coordination number reduces smoothly from $z=6$ as the friction coefficient $\ensuremath{\mu}$ between two particles is increased.

250 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which they vary particle hardness, friction coefficient, and coefficient of restitution.
Abstract: We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that depend on system parameters and construction history. Instead of immediately dropping to four, the coordination number reduces smoothly from $z=6$ as the friction coefficient $\ensuremath{\mu}$ between two particles is increased.

239 citations

Journal ArticleDOI
TL;DR: In this paper, the pore size distribution and architecture in gas shales were studied using a combination of small-angle neutron scattering (SANS), mercury injection capillary pressure (MICP), and helium ion microscopy (HIM).
Abstract: The pore size distribution and architecture in gas shales were studied using a combination of small-angle neutron scattering (SANS), mercury injection capillary pressure (MICP), and helium ion microscopy (HIM). SANS analysis shows that the pore size population is not a power-law distribution across many length scales, typical of sedimentary rocks, but contains an anomalous population of pores on-the-order ∼2 nm, housed primarily in the organic matter. A model is presented showing how a “foamy porosity” with such a characteristic size is a direct result of diagenetic evolution of kerogen. Cross-linking of the kerogen combined with phase separation of gas/oil, leads to arrested coarsening with a length scale set by the cross-length density. These pore populations determined by the scattering model are directly supported by HIM images. Pore connectivity determined through pore-size-to-pore-throat analysis, suggests that interpore connections are also distinct from typical sedimentary rocks. The pore/throat r...

171 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of Flory arguments, known results from directed polymers in random media, and a Lindemann criterion is used to estimate the field and temperature dependence of irreversibility, mechanical entanglement and thermal melting.
Abstract: We discuss the onset of irreversibility and entanglement of vortex lines in high T c superconductors due to point disorder and thermal fluctuations using a simplified cage model. A combination of Flory arguments, known results from directed polymers in random media, and a Lindemann criterion are used to estimate the field and temperature dependence of irreversibility, mechanical entanglement and thermal melting. The qualitative features of this dependence, including its nonmonotonicity when disorder is sufficiently strong, are in good agreement with recent experiments.

165 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
Peter Reimann1
TL;DR: In this paper, the main emphasis is put on directed transport in so-called Brownian motors (ratchets), i.e. a dissipative dynamics in the presence of thermal noise and some prototypical perturbation that drives the system out of equilibrium without introducing a priori an obvious bias into one or the other direction of motion.

2,098 citations

Journal ArticleDOI
TL;DR: A quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case and a transverse analysis of the data across the different configurations allows to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations.
Abstract: The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has been the subject of many experiments and discrete particle simulations. This paper is a collective work carried out among the French research group Groupement de Recherche Milieux Divises (GDR MiDi). It proceeds from the collection of results on steady uniform granular flows obtained by different groups in six different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc. First, a quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case. Second, a transverse analysis of the data across the different configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations. The present work, more than a simple juxtaposition of results, demonstrates the richness of granular flows and underlines the open problem of defining a single rheology.

1,664 citations