scispace - formally typeset
Search or ask a question
Author

Dennis C. Dean

Other affiliations: United States Military Academy
Bio: Dennis C. Dean is an academic researcher from Merck & Co.. The author has contributed to research in topics: Radioligand & Metabolite. The author has an hindex of 27, co-authored 76 publications receiving 5169 citations. Previous affiliations of Dennis C. Dean include United States Military Academy.


Papers
More filters
Journal ArticleDOI
16 Aug 1996-Science
TL;DR: A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs.
Abstract: Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.

2,064 citations

Journal ArticleDOI
TL;DR: A binding assay is developed and shown that labeled ezetimibe glucuronide binds specifically to a single site in brush border membranes and to human embryonic kidney 293 cells expressing NPC1L1, which unequivocally establish NPC1 L1 as the direct target of ezETimibe and should facilitate efforts to identify the molecular mechanism of cholesterol transport.
Abstract: Ezetimibe is a potent inhibitor of cholesterol absorption that has been approved for the treatment of hypercholesterolemia, but its molecular target has been elusive. Using a genetic approach, we recently identified Niemann-Pick C1-Like 1 (NPC1L1) as a critical mediator of cholesterol absorption and an essential component of the ezetimibe-sensitive pathway. To determine whether NPC1L1 is the direct molecular target of ezetimibe, we have developed a binding assay and shown that labeled ezetimibe glucuronide binds specifically to a single site in brush border membranes and to human embryonic kidney 293 cells expressing NPC1L1. Moreover, the binding affinities of ezetimibe and several key analogs to recombinant NPC1L1 are virtually identical to those observed for native enterocyte membranes. KD values of ezetimibe glucuronide for mouse, rat, rhesus monkey, and human NPC1L1 are 12,000, 540, 40, and 220 nM, respectively. Last, ezetimibe no longer binds to membranes from NPC1L1 knockout mice. These results unequivocally establish NPC1L1 as the direct target of ezetimibe and should facilitate efforts to identify the molecular mechanism of cholesterol transport.

703 citations

Journal ArticleDOI
TL;DR: The finding that metabolism of the TZD ring of troglitazone was catalyzed selectively by P450 3A enzymes is significant in light of the recent report that trog litazone is an inducer of this isoform in human hepatocytes.
Abstract: Therapy with the oral antidiabetic agent troglitazone (Rezulin) has been associated with cases of severe hepatotoxicity and drug-induced liver failure, which led to the recent withdrawal of the product from the U.S. market. While the mechanism of this toxicity remains unknown, it is possible that chemically reactive metabolites of the drug play a causative role. In an effort to address this possibility, this study was undertaken to determine whether troglitazone undergoes metabolism in human liver microsomal preparations to electrophilic intermediates. Following incubation of troglitazone with human liver microsomes and with cDNA-expressed cytochrome P450 isoforms in the presence of glutathione (GSH), a total of five GSH conjugates (M1-M5) were detected and identified tentatively by LC-MS/MS analysis. In two cases (M1 and M5), the structures of the adducts were confirmed by NMR spectroscopy and/or by comparison with an authentic standard prepared by synthesis. The formation of GSH conjugates M1-M5 revealed the operation of two distinct metabolic activation pathways for troglitazone, one of which involves oxidation of the substituted chromane ring system to a reactive o-quinone methide derivative, while the second involves a novel oxidative cleavage of the thiazolidinedione (TZD) ring, potentially generating highly electrophilic alpha-ketoisocyanate and sulfenic acid intermediates. When troglitazone was administered orally to a rat, samples of bile were found to contain GSH conjugates which reflected the operation of these same metabolic pathways in vivo. The finding that metabolism of the TZD ring of troglitazone was catalyzed selectively by P450 3A enzymes is significant in light of the recent report that troglitazone is an inducer of this isoform in human hepatocytes. The implications of these results are discussed in the context of the potential for troglitazone to covalently modify hepatic proteins and to cause oxidative stress through redox cycling processes, either of which may play a role in drug-induced liver injury.

276 citations

Journal ArticleDOI
TL;DR: A specific high affinity binding site in porcine and rat anterior pituitary membranes that mediates the activity of these secretagogues has now been identified and is tightly correlated with GH-secretory activity.
Abstract: The potential application of small molecules in GH therapy has recently become a topic of increasing interest The spiroindoline MK-0677, the benzolactam L-692,429, and the peptides, GHRP-6 and hexarelin, have been shown to possess potent and selective GH-secretory activity in several species including human Moreover, these synthetic GH secretagogues act on a signal transduction pathway distinct from that of GHRH A specific high affinity binding site in porcine and rat anterior pituitary membranes that mediates the activity of these secretagogues has now been identified The binding affinity of these structurally diverse secretagogues is tightly correlated with GH-secretory activity The binding is Mg(2+)-dependent, is inhibited by GTP-gamma-S, and is not displaced by GHRH and somatostatin The receptor is distinct from that for GHRH and has the properties of a new G-protein-coupled receptor It is speculated that these GH secretagogues mimic an unidentified natural hormone that regulates GH secretion i

225 citations

Journal Article
TL;DR: The data suggest that diclofenac undergoes biotransformation to reactive metabolites in rats and that CYP isoforms of the 2B, 2C, and 3A subfamilies are involved in this bioactivation process.
Abstract: The nonsteroidal anti-inflammatory drug diclofenac causes a rare but potentially fatal hepatotoxicity that may be associated with the formation of reactive metabolites. In this study, three glutathione (GSH) adducts, namely 5-hydroxy-4-(glutathion-S-yl)diclofenac (M1), 4'-hydroxy-3'-(glutathion-S-yl)diclofenac (M2), and 5-hydroxy-6-(glutathion-S-yl)diclofenac (M3), were identified by liquid chromatography-tandem mass spectrometry analysis of bile from Sprague-Dawley rats injected i.p. with a single dose of diclofenac (200 mg/kg). These adducts presumably were formed via hepatic cytochrome P-450 (CYP)-catalyzed oxidation of diclofenac to reactive benzoquinone imines that were trapped by GSH conjugation. In support of this hypothesis, M1, M2, and M3 were generated from diclofenac in incubations with rat liver microsomes in the presence of NADPH and GSH. Increases in adduct formation were observed when incubations were performed with liver microsomes from phenobarbital- or dexamethasone-treated rats. Adduct formation was inhibited by polyclonal antibodies against CYP2B, CYP2C, and CYP3A (40-50% inhibition at 5 mg of IgG/nmol of CYP) but not by an antibody against CYP1A. Maximal inhibition was obtained when the three inhibitory antibodies were used in a cocktail fashion (70-80% inhibition at 2.5 mg of each IgG/nmol of CYP). These data suggest that diclofenac undergoes biotransformation to reactive metabolites in rats and that CYP isoforms of the 2B, 2C, and 3A subfamilies are involved in this bioactivation process. With respect to CYP2C isoforms, rat hepatic CYP2C7 and CYP2C11 were implicated as mediators of the bioactivation based on immunoinhibition studies using antibodies specific to CYP2C7 and CYP2C11. Screening for GSH adducts also was carried out in human hepatocyte cultures containing diclofenac, and M1, M2, and M3 again were detected. It is possible, therefore, that reactive benzoquinone imines may be formed in vivo in humans and contribute to diclofenac-mediated hepatic injury.

176 citations


Cited by
More filters
Journal ArticleDOI
09 Dec 1999-Nature
TL;DR: The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelIn, a peptide specifically releases GH both in vivo and in vitro.
Abstract: Small synthetic molecules called growth-hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through GHS-R, a G-protein-coupled receptor for which the ligand is unknown. Recent cloning of GHS-R strongly suggests that an endogenous ligand for the receptor does exist and that there is a mechanism for regulating GH release that is distinct from its regulation by hypothalamic growth-hormone-releasing hormone (GHRH). We now report the purification and identification in rat stomach of an endogenous ligand specific for GHS-R. The purified ligand is a peptide of 28 amino acids, in which the serine 3 residue is n-octanoylated. The acylated peptide specifically releases GH both in vivo and in vitro, and O-n-octanoylation at serine 3 is essential for the activity. We designate the GH-releasing peptide 'ghrelin' (ghre is the Proto-Indo-European root of the word 'grow'). Human ghrelin is homologous to rat ghrelin apart from two amino acids. The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelin.

8,073 citations

Journal ArticleDOI
19 Oct 2000-Nature
TL;DR: It is proposed that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary, suggesting an involvement in regulation of energy balance.
Abstract: The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary

3,894 citations

Journal ArticleDOI
11 Jan 2001-Nature
TL;DR: It is shown that ghrelin is involved in the hypothalamic regulation of energy homeostasis and probably has a function in growth regulation by stimulating feeding and release of growth hormone.
Abstract: Ghrelin is an acylated peptide that stimulates the release of growth hormone from the pituitary. Ghrelin-producing neurons are located in the hypothalamus, whereas ghrelin receptors are expressed in various regions of the brain, which is indicative of central-and as yet undefined-physiological functions. Here we show that ghrelin is involved in the hypothalamic regulation of energy homeostasis. Intracerebroventricular injections of ghrelin strongly stimulated feeding in rats and increased body weight gain. Ghrelin also increased feeding in rats that are genetically deficient in growth hormone. Anti-ghrelin immunoglobulin G robustly suppressed feeding. After intracerebroventricular ghrelin administration, Fos protein, a marker of neuronal activation, was found in regions of primary importance in the regulation of feeding, including neuropeptide Y6 (NPY) neurons and agouti-related protein (AGRP) neurons. Antibodies and antagonists of NPY and AGRP abolished ghrelin-induced feeding. Ghrelin augmented NPY gene expression and blocked leptin-induced feeding reduction, implying that there is a competitive interaction between ghrelin and leptin in feeding regulation. We conclude that ghrelin is a physiological mediator of feeding, and probably has a function in growth regulation by stimulating feeding and release of growth hormone.

3,400 citations

Journal ArticleDOI
TL;DR: The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by gh Relin derived from the stomach, which plays important roles for maintaining GH release and energy homeostasis in vertebrates.
Abstract: Small synthetic molecules called growth hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through the GHS-R, a G protein-coupled receptor whose ligand has only been discovered recently. Using a reverse pharmacology paradigm with a stable cell line expressing GHS-R, we purified an endogenous ligand for GHS-R from rat stomach and named it "ghrelin," after a word root ("ghre") in Proto-Indo-European languages meaning "grow." Ghrelin is a peptide hormone in which the third amino acid, usually a serine but in some species a threonine, is modified by a fatty acid; this modification is essential for ghrelin's activity. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. In addition, ghrelin stimulates appetite by acting on the hypothalamic arcuate nucleus, a region known to control food intake. Ghrelin is orexigenic; it is secreted from the stomach and circulates in the bloodstream under fasting conditions, indicating that it transmits a hunger signal from the periphery to the central nervous system. Taking into account all these activities, ghrelin plays important roles for maintaining GH release and energy homeostasis in vertebrates.

2,740 citations

Journal ArticleDOI
01 Dec 1941-Nature
TL;DR: The Pharmacological Basis of Therapeutics, by Prof. Louis Goodman and Prof. Alfred Gilman, New York: The Macmillan Company, 1941, p.
Abstract: The Pharmacological Basis of Therapeutics A Textbook of Pharmacology, Toxicology and Therapeutics for Physicians and Medical Students. By Prof. Louis Goodman and Prof. Alfred Gilman. Pp. xiii + 1383. (New York: The Macmillan Company, 1941.) 50s. net.

2,686 citations