scispace - formally typeset
Search or ask a question
Author

Dennis P. Wall

Bio: Dennis P. Wall is an academic researcher from Stanford University. The author has contributed to research in topics: Autism & Autism spectrum disorder. The author has an hindex of 43, co-authored 158 publications receiving 6789 citations. Previous affiliations of Dennis P. Wall include Harvard University & Beth Israel Deaconess Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: This model is used to identify ∼1,000 genes that are significantly lacking in functional coding variation in non-ASD samples and are enriched for de novo loss-of-function mutations identified in ASD cases, suggesting that the role of de noVO mutations in ASDs might reside in fundamental neurodevelopmental processes.
Abstract: Mark Daly and colleagues present a statistical framework to evaluate the role of de novo mutations in human disease by calibrating a model of de novo mutation rates at the individual gene level. The mutation probabilities defined by their model and list of constrained genes can be used to help identify genetic variants that have a significant role in disease.

952 citations

Journal ArticleDOI
01 Jan 2006-Genetics
TL;DR: The surplus of nonsynonymous mutations is a general feature of the young branches of the phylogenetic tree, affecting also those that are found only in Africa, and a new calibration method is introduced to estimate the coalescent times of mtDNA haplogroups.
Abstract: High mutation rate in mammalian mitochondrial DNA generates a highly divergent pool of alleles even within species that have dispersed and expanded in size recently. Phylogenetic analysis of 277 human mitochondrial genomes revealed a significant (P < 0.01) excess of rRNA and nonsynonymous base substitutions among hotspots of recurrent mutation. Most hotspots involved transitions from guanine to adenine that, with thymine-to-cytosine transitions, illustrate the asymmetric bias in codon usage at synonymous sites on the heavy-strand DNA. The mitochondrion-encoded tRNAThr varied significantly more than any other tRNA gene. Threonine and valine codons were involved in 259 of the 414 amino acid replacements observed. The ratio of nonsynonymous changes from and to threonine and valine differed significantly (P = 0.003) between populations with neutral (22/58) and populations with significantly negative Tajima's D values (70/76), independent of their geographic location. In contrast to a recent suggestion that the excess of nonsilent mutations is characteristic of Arctic populations, implying their role in cold adaptation, we demonstrate that the surplus of nonsynonymous mutations is a general feature of the young branches of the phylogenetic tree, affecting also those that are found only in Africa. We introduce a new calibration method of the mutation rate of synonymous transitions to estimate the coalescent times of mtDNA haplogroups.

470 citations

Journal ArticleDOI
TL;DR: This work estimated the evolutionary rates of >3,000 proteins in four species of the yeast genus Saccharomyces and investigated their relationship with levels of expression and protein dispensability, revealing independent, significant effects on the rate of protein evolution.
Abstract: The evolutionary rates of proteins vary over several orders of magnitude. Recent work suggests that analysis of large data sets of evolutionary rates in conjunction with the results from high-throughput functional genomic experiments can identify the factors that cause proteins to evolve at such dramatically different rates. To this end, we estimated the evolutionary rates of >3,000 proteins in four species of the yeast genus Saccharomyces and investigated their relationship with levels of expression and protein dispensability. Each protein's dispensability was estimated by the growth rate of mutants deficient for the protein. Our analyses of these improved evolutionary and functional genomic data sets yield three main results. First, dispensability and expression have independent, significant effects on the rate of protein evolution. Second, measurements of expression levels in the laboratory can be used to filter data sets of dispensability estimates, removing variates that are unlikely to reflect real biological effects. Third, structural equation models show that although we may reasonably infer that dispensability and expression have significant effects on protein evolutionary rate, we cannot yet accurately estimate the relative strengths of these effects. protein dispensability protein fitness structural equation models

297 citations

Journal ArticleDOI
TL;DR: Using aggregated data from 9,246 families with autism spectrum disorder, intellectual disability, or developmental delay, it is found that ∼1/3 of de novo variants are independently present as standing variation in the Exome Aggregation Consortium's cohort of 60,706 adults, and these deno variants do not contribute to neurodevelopmental risk.
Abstract: Recent research has uncovered an important role for de novo variation in neurodevelopmental disorders. Using aggregated data from 9,246 families with autism spectrum disorder, intellectual disability, or developmental delay, we found that ∼1/3 of de novo variants are independently present as standing variation in the Exome Aggregation Consortium's cohort of 60,706 adults, and these de novo variants do not contribute to neurodevelopmental risk. We further used a loss-of-function (LoF)-intolerance metric, pLI, to identify a subset of LoF-intolerant genes containing the observed signal of associated de novo protein-truncating variants (PTVs) in neurodevelopmental disorders. LoF-intolerant genes also carry a modest excess of inherited PTVs, although the strongest de novo-affected genes contribute little to this excess, thus suggesting that the excess of inherited risk resides in lower-penetrant genes. These findings illustrate the importance of population-based reference cohorts for the interpretation of candidate pathogenic variants, even for analyses of complex diseases and de novo variation.

296 citations

Journal ArticleDOI
TL;DR: The method-reciprocal smallest distance algorithm (rsd)-relies on global sequence alignment and maximum likelihood estimation of evolutionary distances to detect orthologs between two genomes.
Abstract: We developed an algorithm that improves upon the common procedure of taking reciprocal best blast hits(rbh) in the identification of orthologs. The method-reciprocal smallest distance algorithm (rsd)-relies on global sequence alignment and maximum likelihood estimation of evolutionary distances to detect orthologs between two genomes. rsd finds many putative orthologs missed by rbh because it is less likely than rbh to be misled by the presence of a close paralog.

287 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel1, Eric Vallabh Minikel2, Kaitlin E. Samocha, Eric Banks2, Timothy Fennell2, Anne H. O’Donnell-Luria3, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria2, James S. Ware, Andrew J. Hill2, Andrew J. Hill4, Andrew J. Hill1, Beryl B. Cummings2, Beryl B. Cummings1, Taru Tukiainen1, Taru Tukiainen2, Daniel P. Birnbaum2, Jack A. Kosmicki, Laramie E. Duncan1, Laramie E. Duncan2, Karol Estrada2, Karol Estrada1, Fengmei Zhao1, Fengmei Zhao2, James Zou2, Emma Pierce-Hoffman1, Emma Pierce-Hoffman2, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo2, Ron Do, Jason Flannick2, Jason Flannick1, Menachem Fromer, Laura D. Gauthier2, Jackie Goldstein2, Jackie Goldstein1, Namrata Gupta2, Daniel P. Howrigan1, Daniel P. Howrigan2, Adam Kiezun2, Mitja I. Kurki2, Mitja I. Kurki1, Ami Levy Moonshine2, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso2, Gina M. Peloso1, Ryan Poplin2, Manuel A. Rivas2, Valentin Ruano-Rubio2, Samuel A. Rose2, Douglas M. Ruderfer8, Khalid Shakir2, Peter D. Stenson6, Christine Stevens2, Brett Thomas1, Brett Thomas2, Grace Tiao2, María Teresa Tusié-Luna, Ben Weisburd2, Hong-Hee Won9, Dongmei Yu, David Altshuler2, David Altshuler10, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly2, Roberto Elosua, Jose C. Florez2, Jose C. Florez1, Stacey Gabriel2, Gad Getz2, Gad Getz1, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll1, Steven A. McCarroll2, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale2, Benjamin M. Neale1, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan14, Patrick F. Sullivan21, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins17, Hugh Watkins16, James G. Wilson24, Mark J. Daly2, Mark J. Daly1, Daniel G. MacArthur1, Daniel G. MacArthur2 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations

Journal ArticleDOI
27 May 2020-Nature
TL;DR: A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Abstract: Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases. A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

4,913 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations