scispace - formally typeset
Search or ask a question
Author

Dennis W. Hess

Bio: Dennis W. Hess is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Etching (microfabrication) & Plasma etching. The author has an hindex of 39, co-authored 177 publications receiving 6040 citations. Previous affiliations of Dennis W. Hess include University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
04 Mar 2008-Langmuir
TL;DR: In this article, a domain-selective etching of amorphous portions of the cellulose in an oxygen plasma and subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma-enhanced chemical vapor deposition using pentafluoroethane as a precursor yielded two types of superhydrophobicity: "roll-off" (contact angle (CA), 166.7 degrees +/- 0.9 degrees ; CA hysteresis, 3.4 degrees +/- 1.1 degrees ) and "sticky" (CA, 144.8 degrees +/-
Abstract: Most of the artificial superhydrophobic surfaces that have been fabricated to date are not biodegradable, renewable, or mechanically flexible and are often expensive, which limits their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature, satisfies all the above requirements, but it is not superhydrophobic. Superhydrophobicity on cellulose paper was obtained by domain-selective etching of amorphous portions of the cellulose in an oxygen plasma and subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma-enhanced chemical vapor deposition using pentafluoroethane as a precursor. Variation of plasma treatment yielded two types of superhydrophobicity : "roll-off" (contact angle (CA), 166.7 degrees +/- 0.9 degrees ; CA hysteresis, 3.4 degrees +/- 0.1 degrees ) and "sticky" (CA, 144.8 degrees +/- 5.7 degrees ; CA hysteresis, 79.1 degrees +/- 15.8 degrees ) near superhydrophobicity. The nanometer scale roughness obtained by delineating the internal roughness of each fiber and the micrometer scale roughness which is inherent to a cellulose paper surface are robust when compared to roughened structures created by traditional polymer grafting, nanoparticle deposition, or other artificial means.

465 citations

Journal ArticleDOI
TL;DR: Results demonstrated that by altering the surface hydrophobicity, the apparent contact angle changed in accord with the Wenzel equation for surface structures with inclined side walls.
Abstract: Silicon surface hydrophobicity has been varied by using silane treatments on silicon pyramid surfaces generated by KOH anisotropic etching. Results demonstrated that by altering the surface hydrophobicity, the apparent contact angle changed in accord with the Wenzel equation for surface structures with inclined side walls. Hierarchical structures were also constructed from Si pyramids where nanostructures were added by Au-assisted electroless HF/H2O2 etching. Surface hydrophobicity and superhydrophobicity were achieved by surface modification with a variety of silanes. Stability of the Cassie state of superhydrophobicity is described with respect to the Laplace pressure as indicated by the water droplet meniscus in contact with the hierarchical structures. The contact angle hysteresis observed is also discussed with respect to water/substrate adhesion.

298 citations

Journal ArticleDOI
TL;DR: In this paper, the removal of copper oxide using acetic acid at low temperatures was investigated, and the results showed that the acid can tolerate up to 4 vol % water dilution without hindering the oxide removal while producing an oxide-free surface.
Abstract: The removal of copper oxide using acetic acid at low temperatures was investigated. Acetic acid removes a variety of copper oxides, including cuprous oxide, cupric oxide, and cupric hydroxide without attacking the underlying copper film. The removal of these oxides was determined by X-ray photoelectron spectroscopy. Acetic acid can tolerate up to 4 vol % water dilution without hindering the oxide removal while producing an oxide-free surface. However, if a deionized water rinse is performed after an acetic acid treatment, a surface film of cupric hydroxide forms immediately. An acetic acid treatment at 35°C without a water rinse removes the native copper oxide and produces an oxide-free, streak-free copper surface.

253 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical model is derived to elucidate the dominant mechanisms governing film formation, which accurately describes the experimentally observed dependence of film thickness on the variables affecting the spin-coating process.
Abstract: The success of lithographic processes in microelectronics fabrication depends on the reproducible generation of desired polymer resist film thickness and profile uniformity. Numerous process variables affect the outcome of spin coating of resists on wafers. A thorough understanding of the intricate interdependence of process parameters is essential to guide future process design and improvement. A mathematical model is derived to elucidate the dominant mechanisms governing film formation. The non‐Newtonian character of the resist solution is taken into account, as well as the changes in resist viscosity and solvent diffusivity with changing polymer concentration. Results obtained from this model show that polymer film thickness is controlled by convective radial flow of the resist solution and solvent evaporation. The former process governs film thickness during the early stages of the process, while the latter becomes significant in later stages. The model accurately describes the experimentally observed dependence of film thickness on the variables affecting the spin‐coating process.

246 citations

Journal ArticleDOI
TL;DR: The mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces and the effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superHydrophilic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures.
Abstract: Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.

239 citations


Cited by
More filters
Journal ArticleDOI

4,756 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces.
Abstract: Superhydrophobic surfaces have drawn a lot of interest both in academia and in industry because of the self-cleaning properties. This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces. The preparation approaches are reviewed according to categorized approaches such as bottom-up, top-down, and combination approaches. The advantages and limitations of each strategy are summarized and compared. Progress in theoretical modeling of surface design and wettability behavior focuses on the transition state of superhydrophobic surfaces and the role of the roughness factor. Finally, the problems/obstacles related to applicability of superhydrophobic surfaces in real life are addressed. This review should be of interest to students and scientists interested specifically in superhydrophobic surfaces but also to scientists and industries focused in material chemistry in general.

1,885 citations

Journal ArticleDOI
TL;DR: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching, and introduces templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithographic, and block-copolymer masks.
Abstract: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching. First, the basic process and mechanism of metal-assisted chemical etching is introduced. Then, the various influences of the noble metal, the etchant, temperature, illumination, and intrinsic properties of the silicon substrate (e.g., orientation, doping type, doping level) are presented. The anisotropic and the isotropic etching behaviors of silicon under various conditions are presented. Template-based metal-assisted chemical etching methods are introduced, including templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithography, and block-copolymer masks. The metal-assisted chemical etching of other semiconductors is also introduced. A brief introduction to the application of Si nanostructures obtained by metal-assisted chemical etching is given, demonstrating the promising potential applications of metal-assisted chemical etching. Finally, some open questions in the understanding of metal-assisted chemical etching are compiled.

1,689 citations

Journal ArticleDOI
TL;DR: In this paper, the theoretical mechanisms of the wetting of rough surfaces are presented followed by the characterization of natural leaf surfaces and a comprehensive review is presented on artificial super-hydrophobic surfaces fabricated using various fabrication techniques and the influence of micro-, nano-and hierarchical structures on superhydrophobicity, self-cleaning, low adhesion, and drag reduction.

1,610 citations