scispace - formally typeset
Search or ask a question
Author

Derek Felipe Campos

Bio: Derek Felipe Campos is an academic researcher from Amazon.com. The author has contributed to research in topics: Malathion & Tambaqui. The author has an hindex of 7, co-authored 14 publications receiving 171 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Different metabolic responses between these two species in response to nCuO and Cu are revealed, indicating that different mechanisms of toxic action of the contaminants are associated to differential osmoregulatory strategies among species.

51 citations

Journal ArticleDOI
TL;DR: It is argued that the future conditions may elicit deleterious deficiencies in sharks’ critical biological processes which, at the long-term, may have detrimental cascading effects at population and ecosystem levels.
Abstract: Sharks occupy high trophic levels in marine habitats and play a key role in the structure and function of marine communities. Their populations have been declining worldwide by ≥90 %, and their adaptive potential to future ocean conditions is believed to be limiting. Here we experimentally exposed recently hatched bamboo shark (Chiloscyllium punctatum) to the combined effects of tropical ocean warming (+4; 30 °C) and acidification (ΔpH 0.5) and investigated the respiratory, neuronal and antioxidant enzymatic machinery responses. Thirty days post-hatching, juvenile sharks revealed a significant decrease in brain aerobic potential (citrate synthase activity), in opposition to the anaerobic capacity (lactate dehydrogenase). Also, an array of antioxidant enzymes (glutathione S-transferase, superoxide dismutase activity and catalase) acted in concert to detoxify ROS, but this significant upregulation was not enough to minimize the increase in brain’s peroxidative damage and cholinergic neurotransmission. We argue that the future conditions may elicit deleterious deficiencies in sharks’ critical biological processes which, at the long-term, may have detrimental cascading effects at population and ecosystem levels.

47 citations

Journal ArticleDOI
TL;DR: Results from an experiment using wild-caught Cyphocharax abramoides support conclusion of greater damage during hypoxia than during re-oxygenation in Hypoxia-tolerant fish.
Abstract: We examined whether oxidative damage and antioxidant responses are more likely to occur during hypoxia or re-oxygenation in hypoxia-tolerant fish, and whether there is an influence of the rate of re-oxygenation. An hypoxia/re-oxygenation experiment using wild-caught Cyphocharax abramoides (Rio Negro, Brazil), was designed to answer these questions. Lipid peroxidation (MDA), a measure of oxidative damage, and antioxidant activities (superoxide dismutase (SOD), glutathione peroxidase (GPx), antioxidant capacity against peroxyl radicals (ACAP)), were measured in brain, gill and liver tissues after normoxia, 3-h hypoxia (2.7 kPa), and 3-h hypoxia followed by 1-h or 3-h re-oxygenation, implemented either immediately or slowly (3.0 kPa·h −1 ). Critical oxygen tension of routine oxygen consumption rate (Pcrit) (4.1 kPa) and the P O2 at loss of equilibrium (LOE) (1.7 kPa) were determined to set the experimental hypoxia exposure. The Regulation Index, a measure of oxyregulation with declining P O2 , was 0.32. Oxidative damage occurred during hypoxia: no additional damage was observed during re-oxygenation. Tissues responded differentially. GPx and MDA rose in the brain and gills, and SOD (and likely GPx) in the liver during hypoxia. Antioxidants increased further at LOE. Rate of oxygen increase during re-oxygenation did not affect antioxidant responses. In brain and gills, GPx and MDA decreased or recovered after 1-h re-oxygenation. In liver, SOD remained high and GPx increased. In summary, C. abramoides incurred oxidative damage during hypoxic exposure with no additional damage inflicted during re-oxygenation: the rate of re-oxygenation was inconsequential. Literature data support conclusion of greater damage during hypoxia than during re-oxygenation in hypoxia-tolerant fish.

33 citations

Journal ArticleDOI
TL;DR: Evidence is provided that future climate changes will affect energy supply and promote species-specific damages in metabolic pathways, with consequent physiological impairments, which may have detrimental effects at population and ecosystem levels.

30 citations

Journal ArticleDOI
TL;DR: This study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position.
Abstract: The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position.

27 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, a large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification, and the authors show that otoliths (aragonitic ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal.
Abstract: A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonitic ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect reported for structural biominerals.

199 citations

Journal ArticleDOI
TL;DR: This review summarizes the present knowledge on the toxicity of copper and copper nanoparticles (CuNPs) to various fish species and carries out a critical analysis of the availability of the toxicological profiles of copper metal ions and CuNPs for different fishes in order to understand the toxicity mechanisms.
Abstract: This review summarizes the present knowledge on the toxicity of copper and copper nanoparticles (CuNPs) to various fish species. In previous decades, the excessive usage of metal and metallic nanoparticles has increased significantly, increasing the probability of the accumulation and discharge of metals in various trophic levels of the environment. Due to these concerns, it is important to understand the toxicity mechanisms of metals and metallic nanoparticles before they lead to unhealthy effects on human health. In this review paper, we specifically focus on the effect of metal copper and CuNPs on different fish organs under different physiochemical parameters of various water bodies. Nowadays, different forms of copper have distinctive and specific usages, e.g., copper sulfate is a well-established pesticide which is used to control the growth of algae in lakes and ponds. Deactivating the fungi enzymes prevents fungal spores from germinating. This process of deactivation is achieved via the free cupric ions, which are established as the most toxic forms of copper. Complexes of copper with other ligands may or may not be bioavailable for use in aquatic organisms. On the other hand, CuNPs have shown cost-effectiveness and numerous promising uses, but the toxicity and availability of copper in a nanoparticle form is largely unknown, Additionally, physiochemical factors such as the hardness of the water, alkalinity, presence of inorganic and organic ligands, levels of pH, and temperature in various different water bodies affect the toxicity caused by copper and CuNPs. However, comprehensive knowledge and data regarding the pattern of toxicity for copper metal ions and CuNPs in marine organisms is still limited. In this review, we carry out a critical analysis of the availability of the toxicological profiles of copper metal ions and CuNPs for different fishes in order to understand the toxicity mechanisms of copper and CuNPs. We believe that this review will provide valuable information on the toxicological profile of copper, which will further help in devising safe guidelines for the usage of copper and CuNPs in a sustainable manner.

117 citations

Journal Article
TL;DR: In this paper, the individual effects of calcium, magnesium, potassium, sodium and pH on zinc toxicity to the green alga Pseudokirchneriella subcapitata (formerly and better known as Selenastrum capricornutum and Raphidocelis subcapsitata) were investigated.

107 citations

Journal ArticleDOI
TL;DR: This Commentary argues that the concept of the critical oxygen tension in water-breathers is fundamentally flawed for many reasons, and it presents the case for more useful alternatives to Pcrit.
Abstract: P crit – generally defined as the P O 2 below which the animal can no longer maintain a stable rate of O 2 consumption ( Ṁ O 2 ), such that Ṁ O 2 becomes dependent upon P O 2 – provides a single number into which a vast amount of experimental effort has been invested. Here, with specific reference to water-breathers, I argue that this focus on the P crit is not useful for six reasons: (1) calculation of P crit usually involves selective data editing; (2) the value of P crit depends greatly on the way it is determined; (3) there is no good theoretical justification for the concept; (4) P crit is not the transition point from aerobic to anaerobic metabolism, and it disguises what is really going on; (5) P crit is not a reliable index of hypoxia tolerance; and (6) P crit carries minimal information content. Preferable alternatives are loss of equilibrium (LOE) tests for hypoxia tolerance, and experimental description of full Ṁ O 2 versus P O 2 profiles accompanied by measurements of ventilation, lactate appearance and metabolic rate by calorimetry. If the goal is to assess the ability of the animal to regulate Ṁ O 2 from this profile in a mathematical fashion, promising, more informative alternatives to P crit are the regulation index and Michaelis–Menten or sigmoidal allosteric analyses.

85 citations

Journal ArticleDOI
TL;DR: It is found that behaviours with putatively weak or inconsistent consequences for net energy gain or expenditure show no relationship with maintenance metabolic rate, which suggests that the performance model may be the most common model in general.
Abstract: Energy metabolism has received much attention as a potential driver of repeatable among-individual differences in behaviour (animal personality). Several factors have been hypothesized to mediate this relationship. We performed a systematic review with a meta-analysis of >70 studies comprised of >8000 individuals reporting relationships between measures of maintenance metabolic rates (i.e. basal metabolic rate, resting metabolic rate, and standard metabolic rate) and behaviour. We evaluated support for three hypothesized mediators: (i) type of behaviour, (ii) opportunities for energy re-allocation, and (iii) magnitude of energetic constraints. Relationships between measures of maintenance metabolic rate (MR) and behaviour are predicted to be strongest for behaviours with strong consequences for energy turnover (acquisition or expenditure). Consistent with this, we found that behaviours with known consequences for energy gain (e.g. foraging, dominance, boldness) or expenditure (e.g. maximum sprint speed, sustained running speed, maximum distance travelled, etc.) had strong positive correlations with MR, while behaviours with putatively weak and/or inconsistent associations with net energy gain or loss (e.g. exploration, activity, sociability) were not correlated with MR. Greater opportunities for energy reallocation are predicted to weaken relationships between MR and behaviour by creating alternative pathways to balance energy budgets. We tested this by contrasting relationships between MR and behaviour in ectotherms versus endotherms, as thermoregulation in endotherms creates additional opportunities for energy reallocation compared with ectotherms. As predicted, the relationship between behaviour and MR was stronger in ectotherms compared with endotherms. However, statistical analyses of heterogeneity among effect sizes from different species did not support energy re-allocation as the main driver of these differences. Finally, we tested whether conditions where animals face greater constraints in meeting their energy budgets (e.g. field versus laboratory, breeding versus non-breeding) increased the strength of the relationship between MR and behaviour. We found that the relationship between MR and behaviour was unaffected by either of these modifiers. This meta-analysis provides two key insights. First, we observed positive relationships of similar magnitude between MR and behaviours that bring in net energy, and behaviours that cost net energy. This result is only consistent with a performance energy-management model. Given that the studies included in our meta-analysis represent a wide range of taxa, this suggests that the performance model may be the most common model in general. Second, we found that behaviours with putatively weak or inconsistent consequences for net energy gain or expenditure (exploration, activity, sociability) show no relationship with MR. The lack of relationship between MR and behavioural traits with weak and/or inconsistent consequences for energy turnover provides the first systematic demonstration of the central importance of the ecological function of traits in mediating relationships between MR and behaviour.

79 citations