scispace - formally typeset
Search or ask a question
Author

Derek G. Murray

Other affiliations: University of Cambridge, Google
Bio: Derek G. Murray is an academic researcher from Microsoft. The author has contributed to research in topics: Dataflow & Virtual machine. The author has an hindex of 21, co-authored 39 publications receiving 25348 citations. Previous affiliations of Derek G. Murray include University of Cambridge & Google.

Papers
More filters
Proceedings ArticleDOI
02 Nov 2016
TL;DR: TensorFlow as mentioned in this paper is a machine learning system that operates at large scale and in heterogeneous environments, using dataflow graphs to represent computation, shared state, and the operations that mutate that state.
Abstract: TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

10,913 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations

Posted Content
TL;DR: The TensorFlow dataflow model is described and the compelling performance that Tensor Flow achieves for several real-world applications is demonstrated.
Abstract: TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with particularly strong support for training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model in contrast to existing systems, and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

5,542 citations

Proceedings ArticleDOI
03 Nov 2013
TL;DR: It is shown that many powerful high-level programming models can be built on Naiad's low-level primitives, enabling such diverse tasks as streaming data analysis, iterative machine learning, and interactive graph mining.
Abstract: Naiad is a distributed system for executing data parallel, cyclic dataflow programs. It offers the high throughput of batch processors, the low latency of stream processors, and the ability to perform iterative and incremental computations. Although existing systems offer some of these features, applications that require all three have relied on multiple platforms, at the expense of efficiency, maintainability, and simplicity. Naiad resolves the complexities of combining these features in one framework.A new computational model, timely dataflow, underlies Naiad and captures opportunities for parallelism across a wide class of algorithms. This model enriches dataflow computation with timestamps that represent logical points in the computation and provide the basis for an efficient, lightweight coordination mechanism.We show that many powerful high-level programming models can be built on Naiad's low-level primitives, enabling such diverse tasks as streaming data analysis, iterative machine learning, and interactive graph mining. Naiad outperforms specialized systems in their target application domains, and its unique features enable the development of new high-performance applications.

779 citations

Proceedings Article
18 May 2015
TL;DR: This work surveys measurements of data-parallel systems recently reported in SOSP and OSDI, and finds that many systems have either a surprisingly large COST, often hundreds of cores, or simply underperform one thread for all of their reported configurations.
Abstract: We offer a new metric for big data platforms, COST, or the Configuration that Outperforms a Single Thread The COST of a given platform for a given problem is the hardware configuration required before the platform outperforms a competent single-threaded implementation COST weighs a system's scalability against the overheads introduced by the system, and indicates the actual performance gains of the system, without rewarding systems that bring substantial but parallelizable overheads We survey measurements of data-parallel systems recently reported in SOSP and OSDI, and find that many systems have either a surprisingly large COST, often hundreds of cores, or simply underperform one thread for all of their reported configurations

307 citations


Cited by
More filters
28 Oct 2017
TL;DR: An automatic differentiation module of PyTorch is described — a library designed to enable rapid research on machine learning models that focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead.
Abstract: In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models. It builds upon a few projects, most notably Lua Torch, Chainer, and HIPS Autograd [4], and provides a high performance environment with easy access to automatic differentiation of models executed on different devices (CPU and GPU). To make prototyping easier, PyTorch does not follow the symbolic approach used in many other deep learning frameworks, but focuses on differentiation of purely imperative programs, with a focus on extensibility and low overhead. Note that this preprint is a draft of certain sections from an upcoming paper covering all PyTorch features.

13,268 citations

Journal ArticleDOI
TL;DR: This work addresses the task of semantic image segmentation with Deep Learning and proposes atrous spatial pyramid pooling (ASPP), which is proposed to robustly segment objects at multiple scales, and improves the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models.
Abstract: In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First , we highlight convolution with upsampled filters, or ‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second , we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third , we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed “DeepLab” system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.

11,856 citations

Proceedings ArticleDOI
02 Nov 2016
TL;DR: TensorFlow as mentioned in this paper is a machine learning system that operates at large scale and in heterogeneous environments, using dataflow graphs to represent computation, shared state, and the operations that mutate that state.
Abstract: TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

10,913 citations

Journal ArticleDOI
15 Jul 2021-Nature
TL;DR: For example, AlphaFold as mentioned in this paper predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture. But the accuracy is limited by the fact that no homologous structure is available.
Abstract: Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1–4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’8—has been an important open research problem for more than 50 years9. Despite recent progress10–14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. AlphaFold predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture.

10,601 citations

Posted Content
TL;DR: The TensorFlow interface and an implementation of that interface that is built at Google are described, which has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields.
Abstract: TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

10,447 citations