scispace - formally typeset
Search or ask a question
Author

Derek L. Buhl

Bio: Derek L. Buhl is an academic researcher from Pfizer. The author has contributed to research in topics: Hippocampus & Hippocampal formation. The author has an hindex of 17, co-authored 28 publications receiving 4112 citations. Previous affiliations of Derek L. Buhl include Massachusetts Institute of Technology & Rutgers University.

Papers
More filters
Journal ArticleDOI
TL;DR: A robust correlation of neuronal discharges between the somatosensory cortex and hippocampus on both slow and fine time scales in the mouse and rat is shown, suggesting that oscillation-mediated temporal links coordinate specific information transfer between neocortical and hippocampal cell assemblies.
Abstract: Both neocortical and hippocampal networks organize the firing patterns of their neurons by prominent oscillations during sleep, but the functional role of these rhythms is not well understood. Here, we show a robust correlation of neuronal discharges between the somatosensory cortex and hippocampus on both slow and fine time scales in the mouse and rat. Neuronal bursts in deep cortical layers, associated with sleep spindles and delta waves/slow rhythm, effectively triggered hippocampal discharges related to fast (ripple) oscillations. We hypothesize that oscillation-mediated temporal links coordinate specific information transfer between neocortical and hippocampal cell assemblies. Such a neocortical–hippocampal interplay may be important for memory consolidation.

865 citations

Journal ArticleDOI
30 Mar 2012-Cell
TL;DR: It is suggested that as adult-born GCs age, their function switches from pattern separation to rapid pattern completion, and older GCs contribute to the rapid recall by pattern completion.

736 citations

Journal ArticleDOI
29 Feb 2008-Science
TL;DR: A generally applicable tetanus toxin–based method for transgenic mice that permits inducible and reversible inhibition of synaptic transmission and applied it to the trisynaptic pathway is developed and it is found that synaptic output from CA3 in the transexual pathway is dispensable and the short monosynaptic pathways is sufficient for incremental spatial learning.
Abstract: The hippocampus is an area of the brain involved in learning and memory. It contains parallel excitatory pathways referred to as the trisynaptic pathway (which carries information as follows: entorhinal cortex --> dentate gyrus --> CA3 --> CA1 --> entorhinal cortex) and the monosynaptic pathway (entorhinal cortex --> CA1 --> entorhinal cortex). We developed a generally applicable tetanus toxin-based method for transgenic mice that permits inducible and reversible inhibition of synaptic transmission and applied it to the trisynaptic pathway while preserving transmission in the monosynaptic pathway. We found that synaptic output from CA3 in the trisynaptic pathway is dispensable and the short monosynaptic pathway is sufficient for incremental spatial learning. In contrast, the full trisynaptic pathway containing CA3 is required for rapid one-trial contextual learning, for pattern completion-based memory recall, and for spatial tuning of CA1 cells.

475 citations

Journal ArticleDOI
TL;DR: The electrical patterns in the behaving animal are investigated using multisite silicon probes and wire tetrodes and it is suggested that the main hippocampal network patterns are mediated by similar pathways and mechanisms in mouse and rat.

469 citations

Journal ArticleDOI
24 Nov 2004-Cell
TL;DR: It is suggested that HCN1 channels constrain learning and memory by regulating dendritic integration of distal synaptic inputs to pyramidal cells.

454 citations


Cited by
More filters
Journal ArticleDOI
25 Jun 2004-Science
TL;DR: Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.
Abstract: Clocks tick, bridges and skyscrapers vibrate, neuronal networks oscillate. Are neuronal oscillations an inevitable by-product, similar to bridge vibrations, or an essential part of the brain’s design? Mammalian cortical neurons form behavior-dependent oscillating networks of various sizes, which span five orders of magnitude in frequency. These oscillations are phylogenetically preserved, suggesting that they are functionally relevant. Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.

5,512 citations

Journal ArticleDOI
TL;DR: A set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra is generated and enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo.
Abstract: The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in several Cre-driver lines, including new Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.

5,365 citations

Book
01 Jan 2006
TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Abstract: Prelude. Cycle 1. Introduction. Cycle 2. Structure defines function. Cycle 3. Diversity of cortical functions is provided by inhibition. Cycle 4. Windows on the brain. Cycle 5. A system of rhythms: from simple to complex dynamics. Cycle 6. Synchronization by oscillation. Cycle 7. The brain's default state: self-organized oscillations in rest and sleep. Cycle 8. Perturbation of the default patterns by experience. Cycle 9. The gamma buzz: gluing by oscillations in the waking brain. Cycle 10. Perceptions and actions are brain state-dependent. Cycle 11. Oscillations in the "other cortex:" navigation in real and memory space. Cycle 12. Coupling of systems by oscillations. Cycle 13. The tough problem. References.

4,266 citations

Journal ArticleDOI
TL;DR: High-density recordings of field activity in animals and subdural grid recordings in humans can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase the understanding of how these processes contribute to the extracellular signal.
Abstract: Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

3,366 citations

Journal ArticleDOI
TL;DR: Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep, through specific patterns of neuromodulatory activity and electric field potential oscillations.
Abstract: Sleep improves the consolidation of both declarative and non-declarative memories. Diekelmann and Born discuss the potential mechanisms through which slow wave sleep and rapid eye movement sleep support system and synaptic consolidation. Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep. Consolidation during sleep promotes both quantitative and qualitative changes of memory representations. Through specific patterns of neuromodulatory activity and electric field potential oscillations, slow-wave sleep (SWS) and rapid eye movement (REM) sleep support system consolidation and synaptic consolidation, respectively. During SWS, slow oscillations, spindles and ripples — at minimum cholinergic activity — coordinate the re-activation and redistribution of hippocampus-dependent memories to neocortical sites, whereas during REM sleep, local increases in plasticity-related immediate-early gene activity — at high cholinergic and theta activity — might favour the subsequent synaptic consolidation of memories in the cortex.

2,983 citations