scispace - formally typeset
Search or ask a question
Author

Derek Tishler

Bio: Derek Tishler is an academic researcher from University of Central Florida. The author has contributed to research in topics: Phonon & Graphene. The author has an hindex of 4, co-authored 5 publications receiving 348 citations.

Papers
More filters
Journal ArticleDOI
04 Jan 2011-ACS Nano
TL;DR: In this paper, the authors observed new combination modes in the range from 1650 to 2300 cm−1 in single-SLG, bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates.
Abstract: We have observed new combination modes in the range from 1650 to 2300 cm−1 in single-(SLG), bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates. A peak at ∼1860 cm−1 (iTALO−) is observed due to a combination of the in-plane transverse acoustic (iTA) and the longitudinal optical (LO) phonons. The intensity of this peak decreases with increasing number of layers and this peak is absent for bulk graphite. The overtone of the out-of-plane transverse optical (oTO) phonon at ∼1750 cm−1, also called the M band, is suppressed for both SLG and IBLG. In addition, two previously unidentified modes at ∼2200 and ∼1880 cm−1 are observed in SLG. The 2220 cm−1 (1880 cm−1) mode is tentatively assigned to the combination mode of in-plane transverse optical (iTO) and TA phonons (oTO+LO phonons) around the K point in the graphene Brillouin zone. Finally, the peak frequency of the 1880 (2220) cm−1 mode is observed to increase (decrease) linearly with increasing graphene layers.

176 citations

Journal Article
TL;DR: New combination modes in the range from 1650 to 2300 cm(-1) in single-(SLG), bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates are observed and the peak frequency of the 1880 (2220) cm (-1) mode is observed to increase (decrease) linearly with increasing graphene layers.
Abstract: We have observed new combination modes in the range from 1650 to 2300 cm−1 in single-(SLG), bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates. A peak at ∼1860 cm−1 (iTALO−) is observed due to a combination of the in-plane transverse acoustic (iTA) and the longitudinal optical (LO) phonons. The intensity of this peak decreases with increasing number of layers and this peak is absent for bulk graphite. The overtone of the out-of-plane transverse optical (oTO) phonon at ∼1750 cm−1, also called the M band, is suppressed for both SLG and IBLG. In addition, two previously unidentified modes at ∼2200 and ∼1880 cm−1 are observed in SLG. The 2220 cm−1 (1880 cm−1) mode is tentatively assigned to the combination mode of in-plane transverse optical (iTO) and TA phonons (oTO+LO phonons) around the K point in the graphene Brillouin zone. Finally, the peak frequency of the 1880 (2220) cm−1 mode is observed to increase (decrease) linearly with increasing graphene layers.

168 citations

Journal ArticleDOI
TL;DR: In this paper, the multiphonon Raman scattering in graphene samples was investigated and higher-order combination modes involving three and four phonons were observed in single-layer, bilayer, and few-layer graphene samples prepared by mechanical exfoliation.
Abstract: We report on multiphonon Raman scattering in graphene samples. Higher-order combination modes involving three and four phonons are observed in single-layer, bilayer, and few-layer graphene samples prepared by mechanical exfoliation. The intensity of the higher-order phonon modes (relative to the G peak) is highest in single-layer graphene and decreases with increasing layers. In addition, all higher-order modes are observed to upshift in frequency almost linearly with increasing graphene layers, betraying the underlying interlayer van der Waals interactions.

35 citations

Journal ArticleDOI
TL;DR: A concerted rearrangement of OH hydrogens is proposed to account for the observed dynamic disorder in disordered methyl α-L-rhamnofuranoside and the relatively minor differences in non-hydrogen atom positions suggest that characterization of a complete crystal structure by X-ray powder diffraction may be feasible.
Abstract: A combination of solid-state 13C NMR tensor data and DFT computational methods is utilized to predict the conformation in disordered methyl α-l-rhamnofuranoside. This previously uncharacterized solid is found to be crystalline and consists of at least six distinct conformations that exchange on the kHz time scale. A total of 66 model structures were evaluated, and six were identified as being consistent with experimental 13C NMR data. All feasible structures have very similar carbon and oxygen positions and differ most significantly in OH hydrogen orientations. A concerted rearrangement of OH hydrogens is proposed to account for the observed dynamic disorder. This rearrangement is accompanied by smaller changes in ring conformation and is slow enough to be observed on the NMR time scale due to severe steric crowding among ring substituents. The relatively minor differences in non-hydrogen atom positions in the final structures suggest that characterization of a complete crystal structure by X-ray powder d...

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have observed new combination modes in the range from 1650 - 2300 cm-1 in single-(SLG), bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates.
Abstract: We have observed new combination modes in the range from 1650 - 2300 cm-1 in single-(SLG), bi-, few-layer and incommensurate bilayer graphene (IBLG) on silicon dioxide substrates. The M band at ~1750 cm-1 is suppressed for both SLG and IBLG. A peak at ~1860 cm-1 (iTALO-) is observed due to a combination of the iTA and LO phonons. The intensity of this peak decreases with increasing number of layers and this peak is absent in bulk graphite. Two previously unidentified modes at ~1880 cm-1 (iTALO+) and ~2220 cm-1 (iTOTA) in SLG are tentatively assigned as combination modes around the K point of the graphene Brillouin zone. The peak frequencies of the iTALO+ (iTOTA) modes are observed to increase (decrease) linearly with increasing graphene layers.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
TL;DR: The essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene are described and the extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described.
Abstract: Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.

1,184 citations

Journal ArticleDOI
TL;DR: In this paper, the photocatalytic performance of the reduced graphene oxide (hGO)-TNT composites was evaluated for the photodegradation of malachite green using X-ray diffraction (XRD), Raman, FTIR, and XPS analysis.
Abstract: In this study, TiO2 nanotube (TNT)/reduced graphene oxide (hGO) composites were prepared by an alkaline hydrothermal process. This was achieved by decorating graphene oxide (GO) layers with commercially available TiO2 nanoparticles (P90) followed by hydrothermal synthesis, which converts the TiO2 nanoparticles to small diameter (∼9 nm) TNTs on the hGO surface. The alkaline medium used to synthesize the TNTs simultaneously converts GO to deoxygenated graphene oxide (hGO). Compared to GO, the hGO has a ∼70% reduction of oxygenated species after alkaline hydrothermal treatment. The graphene nature of hGO in the composites was confirmed by X-ray diffraction (XRD), Raman, FTIR, and X-ray photoelectron spectroscopy (XPS) analysis. The photocatalytic performance of the hGO-TNT composites was evaluated for the photodegradation of malachite green. It was found that the ratio of hGO to TNT in the composites significantly affects the photocatalytic activity. Higher amounts of hGO in hGO-TNT composites showed lower p...

868 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in the field of semiconducting derivatives of GAs is summarized, including graphane, fluorographene, and diamane.
Abstract: One of the current priorities in the physics and chemistry of graphene is the study of its semiconducting derivatives. This review summarizes the state of the art in this area of research. The structure and electronic properties of materials as such graphene ribbons, partially hydrogenated and fluorinated graphene, graphane, fluorographene, and diamane are discussed in detail.

357 citations

Journal ArticleDOI
TL;DR: Electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo are reviewed.
Abstract: Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Moller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed.

302 citations