scispace - formally typeset
Search or ask a question
Author

Derrick K. DeConti

Bio: Derrick K. DeConti is an academic researcher from University of Massachusetts Medical School. The author has contributed to research in topics: Plasmodium falciparum & Plasmodium vivax. The author has an hindex of 3, co-authored 3 publications receiving 293 citations. Previous affiliations of Derrick K. DeConti include University of Massachusetts Amherst.

Papers
More filters
Journal ArticleDOI
TL;DR: An assay to quantify rare polymorphisms in parasite populations that uses a pooled deep-sequencing approach to score allele frequencies is developed and validated by evaluating mixtures of laboratory parasite strains, and used to screen P. falciparum parasites from >1100 African infections collected since 2002.
Abstract: Plasmodium falciparum parasites that are resistant to artemisinins have been detected in Southeast Asia. Resistance is associated with several polymorphisms in the parasite's K13-propeller gene. The molecular epidemiology of these artemisinin resistance genotypes in African parasite populations is unknown. We developed an assay to quantify rare polymorphisms in parasite populations that uses a pooled deep-sequencing approach to score allele frequencies, validated it by evaluating mixtures of laboratory parasite strains, and then used it to screen P. falciparum parasites from >1100 African infections collected since 2002 from 14 sites across sub-Saharan Africa. We found no mutations in African parasite populations that are associated with artemisinin resistance in Southeast Asian parasites. However, we observed 15 coding mutations, including 12 novel mutations, and limited allele sharing between parasite populations, consistent with a large reservoir of naturally occurring K13-propeller variation. Although polymorphisms associated with artemisinin resistance in P. falciparum in Southeast Asia are not prevalent in sub-Saharan Africa, numerous K13-propeller coding polymorphisms circulate in Africa. Although their distributions do not support a widespread selective sweep for an artemisinin-resistant phenotype, the impact of these mutations on artemisinin susceptibility is unknown and will require further characterization. Rapid, scalable molecular surveillance offers a useful adjunct in tracking and containing artemisinin resistance.

253 citations

Journal ArticleDOI
TL;DR: A cross of Plasmodium vivax malaria parasites links a chloroquine resistance (CQR) phenotype to a 76 kb region of chromosome 1 and greater expression of pvcrt, an ortholog of the Plas modium falciparum CQR transporter gene.
Abstract: Mainstay treatment for Plasmodium vivax malaria has long relied on chloroquine (CQ) against blood-stage parasites plus primaquine against dormant liver-stage forms (hypnozoites), however drug resistance confronts this regimen and threatens malaria control programs. Understanding the basis of P. vivax chloroquine resistance (CQR) will inform drug discovery and malaria control. Here we investigate the genetics of P. vivax CQR by a cross of parasites differing in drug response. Gametocytogenesis, mosquito infection, and progeny production are performed with mixed parasite populations in nonhuman primates, as methods for P. vivax cloning and in vitro cultivation remain unavailable. Linkage mapping of progeny surviving >15 mg/kg CQ identifies a 76 kb region in chromosome 1 including pvcrt, an ortholog of the Plasmodium falciparum CQR transporter gene. Transcriptional analysis supports upregulated pvcrt expression as a mechanism of CQR. Here, a cross of Plasmodium vivax malaria parasites links a chloroquine resistance (CQR) phenotype to a 76 kb region of chromosome 1 and greater expression of pvcrt, an ortholog of the Plasmodium falciparum CQR transporter gene.

38 citations

Journal ArticleDOI
TL;DR: It is found that although P. falciparum has undergone population fracturing, the coendemic P. vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections.
Abstract: Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P. vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P. vivax and 80 P. falciparum isolates collected between 2009 and 2013. We found that although P. falciparum has undergone population fracturing, the coendemic P. vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P. falciparum, P. vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P. vivax and P. falciparum parasites. Although population substructuring in P. falciparum has resulted in clonal outgrowths of resistant parasites, P. vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P. vivax’s resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P. vivax and achieve malaria elimination.

37 citations

Journal ArticleDOI
TL;DR: In this paper , SLC25 expression clusters facilitate the identification of the tissue-of-origin, essential to efficacy of most cancer therapies, of CUPs (cancerunknown-primary) known to have poor prognoses.
Abstract: Transporters of the inner mitochondrial membrane are essential to metabolism. We demonstrate that metabolism as represented by expression of genes encoding SLC25 transporters differentiates human cancers. Tumor to normal tissue expression ratios for clear cell renal cell carcinoma, colon adenocarcinoma, lung adenocarcinoma and breast invasive carcinoma were found to be highly significant. Affinity propagation trained on SLC25 gene expression patterns from 19 human cancer types (6825 TCGA samples) and normal tissues (2322 GTEx samples) was used to generate clusters. They differentiate cancers from normal tissues. They also indicate cancer subtypes with survivals distinct from the total patient population of the cancer type. Probing the kidney, colon, lung, and breast cancer clusters, subtype pairs of cancers were identified with distinct prognoses and differing in expression of protein coding genes from among 2080 metabolic enzymes assayed. We demonstrate that SLC25 expression clusters facilitate the identification of the tissue-of-origin, essential to efficacy of most cancer therapies, of CUPs (cancer-unknown-primary) known to have poor prognoses. Different cancer types within a single cluster have similar metabolic patterns and this raises the possibility that such cancers may respond similarly to existing and new anti-cancer therapies.

Cited by
More filters
Journal ArticleDOI
23 Jan 2015-Science
TL;DR: The data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites and imperils efforts to reduce the global malaria burden.
Abstract: The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.

570 citations

Journal ArticleDOI
Didier Menard1, Nimol Khim1, Johann Beghain, Ayola A. Adegnika2, Ayola A. Adegnika3, Mohammad Shafiul-Alam4, Olukemi K. Amodu5, Ghulam Rahim-Awab6, Ghulam Rahim-Awab7, Céline Barnadas8, Céline Barnadas9, Céline Barnadas10, Antoine Berry, Yap Boum11, Yap Boum12, Maria Dorina Bustos13, Jun Cao14, Jun Hu Chen15, Louis Collet, Liwang Cui16, Garib Das Thakur, Alioune Dieye17, Alioune Dieye1, Djibrine Djalle1, Monique A. Dorkenoo18, Carole E. Eboumbou-Moukoko19, Fe Espino20, Thierry Fandeur, Maria de Fátima Ferreira-da-Cruz21, Abebe A. Fola10, Abebe A. Fola22, Hans-Peter Fuehrer, Abdillahi Mohamed Hassan13, Sócrates Herrera, Bouasy Hongvanthong, Sandrine Houzé, Maman Laminou Ibrahim, Mohammad Jahirul-Karim, Lubin Jiang23, Shigeyuki Kano1, Wasif Ali-Khan4, Maniphone Khanthavong, Peter G. Kremsner2, Marcus V. G. Lacerda21, Rithea Leang, Mindy Leelawong24, Mei Li15, Khin Lin, Jean Baptiste Mazarati, Sandie Menard, Isabelle Morlais25, Hypolite Muhindo-Mavoko26, Hypolite Muhindo-Mavoko27, Lise Musset1, Kesara Na-Bangchang28, Michael Nambozi, Karamoko Niaré29, Harald Noedl30, Jean-Bosco Ouédraogo, Dylan R. Pillai31, Bruno Pradines, Bui Quang-Phuc, Michael Ramharter3, Michael Ramharter30, Milijaona Randrianarivelojosia1, Jetsumon Sattabongkot7, Abdiqani Sheikh-Omar, Kigbafori D. Silué32, Sodiomon B. Sirima, Colin J. Sutherland33, Din Syafruddin34, Rachida Tahar, Lin Hua Tang15, Offianan Andre Toure1, Patrick Tshibangu-Wa-Tshibangu27, Inès Vigan-Womas1, Marian Warsame, Lyndes Wini35, Sedigheh Zakeri1, Saorin Kim1, Rotha Eam1, Laura Berne1, Chanra Khean1, Sophy Chy1, Malen Ken1, Kaknika Loch1, Lydie Canier1, Valentine Duru1, Eric Legrand1, Jean Christophe Barale, Barbara H. Stokes36, Judith Straimer36, Benoit Witkowski1, David A. Fidock36, Christophe Rogier1, Pascal Ringwald, Frédéric Ariey37, Odile Mercereau-Puijalon 
TL;DR: In this article, the authors analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic and identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution.
Abstract: BACKGROUND: Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS: We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS: We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS: No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).

398 citations

Journal ArticleDOI
TL;DR: Assessment of the spread of artemisinin-resistant P falciparum in Myanmar finds Artemisinin resistance extends across much of Myanmar, and Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of warfarin resistance to other regions is to be avoided.
Abstract: Summary Background Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations. Methods We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar. Findings Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations. Interpretation Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided. Funding Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research Programme and the Bill & Melinda Gates Foundation.

385 citations

Journal ArticleDOI
TL;DR: Elimination of artemisinin resistance will imply elimination of all falciparum malaria from the same areas, and novel regimens and strategies using existing antimalarial drugs will be needed until novel compounds can be deployed.
Abstract: Increasing antimalarial drug resistance once again threatens effective antimalarial drug treatment, malaria control, and elimination. Artemisinin combination therapies (ACTs) are first-line treatment for uncomplicated falciparum malaria in all endemic countries, yet partial resistance to artemisinins has emerged in the Greater Mekong Subregion. Concomitant emergence of partner drug resistance is now causing high ACT treatment failure rates in several areas. Genetic markers for artemisinin resistance and several of the partner drugs have been established, greatly facilitating surveillance. Single point mutations in the gene coding for the Kelch propeller domain of the K13 protein strongly correlate with artemisinin resistance. Novel regimens and strategies using existing antimalarial drugs will be needed until novel compounds can be deployed. Elimination of artemisinin resistance will imply elimination of all falciparum malaria from the same areas. In vivax malaria, chloroquine resistance is an increasing problem.

290 citations

Journal ArticleDOI
04 Mar 2016-eLife
TL;DR: It is shown that African kelch13 mutations have originated locally, and that kelCh13 shows a normal variation pattern relative to other genes in Africa, whereas in Southeast Asia there is a great excess of non-synonymous mutations, many of which cause radical amino-acid changes.
Abstract: Malaria is an infectious disease caused by a microscopic parasite called Plasmodium, which is transferred between humans by mosquitos. One species of malaria parasite called Plasmodium falciparum can cause particularly severe and life-threatening forms of the disease. Currently, the most widely used treatment for P. falciparum infections is artemisinin combination therapy, a treatment that combines the drug artemisinin (or a closely related molecule) with another antimalarial drug. However, resistance to artemisinin has started to spread throughout Southeast Asia. Artemisinin resistance is caused by mutations in a parasite gene called kelch13, and researchers have identified over 20 different mutations in P. falciparum that confer artemisinin resistance. The diversity of mutations involved, and the fact that the same mutation can arise independently in different locations, make it difficult to track the spread of resistance using conventional molecular marker approaches. Here, Amato, Miotto et al. sequenced the entire genomes of more than 3,000 clinical samples of P. falciparum from Southeast Asia and Africa, collected as part of a global network of research groups called the MalariaGEN Plasmodium falciparum Community Project. Amato, Miotto et al. found that African parasites had independently acquired many of the same kelch13 mutations that are known to cause resistance to artemisinin in Southeast Asia. However the kelch13 mutations seen in Africa remained at low levels in the parasite population, and appeared to be under much less pressure for evolutionary selection than those found in Southeast Asia. These findings demonstrate that the emergence and spread of resistance to antimalarial drugs does not depend solely on the mutational process, but also on other factors that influence whether the mutations will spread in the population. Understanding how this is affected by different patterns of drug treatments and other environmental conditions will be important in developing more effective strategies for combating malaria.

276 citations