scispace - formally typeset
Search or ask a question
Author

Des R. Kashyap

Bio: Des R. Kashyap is an academic researcher from Indiana University. The author has contributed to research in topics: Peptidoglycan & Respiratory chain. The author has an hindex of 13, co-authored 21 publications receiving 2130 citations. Previous affiliations of Des R. Kashyap include Panjab University, Chandigarh & Montana State University.

Papers
More filters
Journal ArticleDOI
TL;DR: This review discusses various types of pectinases and their applications in the commercial sector.

1,001 citations

Journal ArticleDOI
TL;DR: The effect of operational parameters such as type of substrate, size of inoculum, concentration of volatile fatty acids, hydraulic retention time and loading rate, on reduction of TS/VS, BOD/COD and biogas yield is discussed in detail.

230 citations

Journal ArticleDOI
04 Jan 2016-PLOS ONE
TL;DR: Significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice are identified and these results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii ascolitis-protective species.
Abstract: Dysbiosis is a hallmark of inflammatory bowel disease (IBD), but it is unclear which specific intestinal bacteria predispose to and which protect from IBD and how they are regulated. Peptidoglycan recognition proteins (Pglyrps) are antibacterial, participate in maintaining intestinal microflora, and modulate inflammatory responses. Mice deficient in any one of the four Pglyrp genes are more sensitive to dextran sulfate sodium (DSS)-induced colitis, and stools from Pglyrp-deficient mice transferred to wild type (WT) germ-free mice predispose them to much more severe colitis than stools from WT mice. However, the identities of these Pglyrp-regulated bacteria that predispose Pglyrp-deficient mice to colitis or protect WT mice from colitis are not known. Here we identified significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice. The most consistent changes in microbiome in all Pglyrp-deficient mice were in Bacteroidales, from which we selected four species, two with increased abundance (Prevotella falsenii and Parabacteroides distasonis) and two with decreased abundance (Bacteroides eggerthii and Alistipes finegoldii). We then gavaged WT mice with stock type strains of these species to test the hypothesis that they predispose to or protect from DSS-induced colitis. P. falsenii, P. distasonis, and B. eggerthii all enhanced DSS-induced colitis in both WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora. By contrast, A. finegoldii (which is the most abundant species in WT mice) attenuated DSS-induced colitis both in WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora, similar to the colitis protective effect of the entire normal microflora. These results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii as colitis-protective species.

207 citations

Journal ArticleDOI
TL;DR: Regulation of A. tumefaciens As( III) oxidation is complex, apparently being controlled by As(III) exposure, a two-component signal transduction system, and quorum sensing.
Abstract: Seminal regulatory controls of microbial arsenite [As(III)] oxidation are described in this study. Transposon mutagenesis of Agrobacterium tumefaciens identified genes essential for As(III) oxidation, including those coding for a two-component signal transduction pair. The transposon interrupted a response regulator gene (referred to as aoxR), which encodes an ntrC-like protein and is immediately downstream of a gene (aoxS) encoding a protein with primary structural features found in sensor histidine kinases. The structural genes for As(III) oxidase (aoxAB), a c-type cytochrome (cytc2), and molybdopterin biosynthesis (chlE) were downstream of aoxR. The mutant could not be complemented by aoxSR in trans but was complemented by a clone containing aoxS-aoxR-aoxA-aoxB-cytc2 and consistent with reverse transcriptase (RT) PCR experiments, which demonstrated these genes are cotranscribed as an operon. Expression of aoxAB was monitored by RT-PCR and found to be up-regulated by the addition of As(III) to cell cultures. Expression of aoxAB was also controlled in a fashion consistent with quorum sensing in that (i) expression of aoxAB was absent in As(III)-unexposed early-log-phase cells but was observed in As(III)-unexposed, late-log-phase cells and (ii) treating As(III)unexposed, early-log-phase cells with ethyl acetate extracts of As(III)-unexposed, late-log-phase culture supernatants also resulted in aoxAB induction. Under inducing conditions, aoxS expression was readily observed in the wild-type strain but significantly reduced in the mutant, indicating that AoxR is autoregulatory and at least partially controls the expression of the aox operon. In summary, regulation of A. tumefaciens As(III) oxidation is complex, apparently being controlled by As(III) exposure, a two-component signal transduction system, and quorum sensing.

165 citations

Journal ArticleDOI
TL;DR: A soil isolate, Bacillus sp.
Abstract: A soil isolate, Bacillus sp. DT7 has been found to produce significant amounts of an extracellular pectinase subsequently characterized as pectin lyase (EC 4.2.2.10). By optimizing growth conditions, Bacillus sp. DT7 produced higher amount of pectin lyase (53 units/ml) than that has been reported in the literature. Using gel filtration and ion exchange chromatography, this enzyme was purified and found to have a molecular mass of 106 kDa. The purified enzyme exhibited maximal activity at a temperature of 60 ∘C and pH 8.0. The presence of 100 mM concentrations of CaCl2 and mercaptoethanol significantly enhanced pectinase activity of the purified enzyme. This pectinase has tremendous applications in textile industry, plant tissue maceration and fruit juice wastewater treatments.

163 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Abstract: The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within ...

1,775 citations

Journal ArticleDOI
TL;DR: This review discusses various types of pectinases and their applications in the commercial sector.

1,001 citations

Journal ArticleDOI
TL;DR: The various techniques, which could be used to enhance the gas production rate from solid substrates are reviewed.

978 citations

Journal ArticleDOI
TL;DR: Pectinases are one of the most widely distributed enzymes in bacteria, fungi and plants as discussed by the authors, and they have a share of 25% in the global sales of food enzymes.

975 citations

Journal ArticleDOI
TL;DR: This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields.

856 citations