scispace - formally typeset
Search or ask a question
Author

Desalegne Teweldebrhan

Other affiliations: University of California
Bio: Desalegne Teweldebrhan is an academic researcher from University of California, Riverside. The author has contributed to research in topics: Graphene & Topological insulator. The author has an hindex of 26, co-authored 48 publications receiving 15000 citations. Previous affiliations of Desalegne Teweldebrhan include University of California.

Papers
More filters
Journal ArticleDOI
TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Abstract: We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range ∼(4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.

11,878 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal conductivity of graphene suspended across trenches in Si∕SiO2 wafer was investigated using a noncontact technique based on micro-Raman spectroscopy.
Abstract: The authors reported on investigation of the thermal conductivity of graphene suspended across trenches in Si∕SiO2 wafer. The measurements were performed using a noncontact technique based on micro-Raman spectroscopy. The amount of power dissipated in graphene and corresponding temperature rise were determined from the spectral position and integrated intensity of graphene’s G mode. The extremely high thermal conductivity in the range of ∼3080–5150W∕mK and phonon mean free path of ∼775nm near room temperature were extracted for a set of graphene flakes. The obtained results suggest graphene’s applications as thermal management material in future nanoelectronic circuits.

1,881 citations

Journal ArticleDOI
TL;DR: In this paper, the micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by low and medium energy electron-beam irradiation (5-20 keV) was conducted.
Abstract: The authors report micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5–20 keV). It was found that the radiation exposures result in the appearance of the strong disorder D band around 1345 cm−1, indicating damage to the lattice. The D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests graphene’s transformation to the nanocrystalline and then to amorphous form. The results have important implications for graphene characterization and device fabrication, which rely on the electron microscopy and focused ion beam processing.

459 citations

Journal ArticleDOI
TL;DR: A method for "graphene-inspired" exfoliation of crystalline bismuth telluride films with a thickness of a few atoms is described, paving the way for producing stacks of crystallines bism Ruth Telluride quantum wells with the strong spatial confinement of charge carriers and acoustic phonons, beneficial for thermoelectric devices.
Abstract: Bismuth telluride (Bi2Te3) and its alloys are the best bulk thermoelectric materials known today. In addition, stacked quasi-two-dimensional (2D) layers of Bi2Te3 were recently identified as promising topological insulators. In this Letter we describe a method for “graphene-inspired” exfoliation of crystalline bismuth telluride films with a thickness of a few atoms. The atomically thin films were suspended across trenches in Si/SiO2 substrates, and subjected to detail material characterization, which included atomic force microscopy and micro-Raman spectroscopy. The presence of the van der Waals gaps allowed us to disassemble Bi2Te3 crystal into its quintuple building blocks—five monatomic sheets—consisting of Te(1)−Bi−Te(2)−Bi−Te(1). By altering the thickness and sequence of atomic planes, we were able to create “designer” nonstoichiometric quasi-2D crystalline films, change their composition and doping, the type of charge carriers as well as other properties. The exfoliated quintuples and ultrathin film...

440 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported on the experimental investigation of the high-temperature electrical resistance of graphene and fabricated the test structures were fabricated by using the focused ion beam from the single and bilayer graphene produced by mechanical exfoliation.
Abstract: The authors reported on the experimental investigation of the high-temperature electrical resistance of graphene. The test structures were fabricated by using the focused ion beam from the single and bilayer graphene produced by mechanical exfoliation. It was found that as temperature increases from 300to500K, the resistance of the single, and bilayer graphene interconnects drops down by 30% and 70%, respectively. The quenching and temperature dependence of the resistance were explained by the thermal generation of the electron-hole pairs and carrier scattering by acoustic phonons. The obtained results are important for the proposed graphene interconnect applications in integrated circuits.

238 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
19 Jun 2009-Science
TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Abstract: Graphene is a wonder material with many superlatives to its name. It is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a benchtop experiment. This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.

12,117 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations