scispace - formally typeset
Search or ask a question
Author

Desmond Radlein

Other affiliations: University of Waterloo
Bio: Desmond Radlein is an academic researcher from University of the West Indies. The author has contributed to research in topics: Pyrolysis & Cellulose. The author has an hindex of 19, co-authored 28 publications receiving 3242 citations. Previous affiliations of Desmond Radlein include University of Waterloo.
Topics: Pyrolysis, Cellulose, Biomass, Fluidized bed, Char

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the design considerations faced by the developers of fast pyrolysis, upgrading and utilisation processes in order to successfully implement the technologies and provide a case study of the application of the technology to waste wood and how this approach gives very good control of contaminants.

1,664 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the characteristics of the more important fast pyrolysis processes, and the advantages and problems existing with present pyrolynsis reactors are discussed, with the emphasis on bubbling fluidized bed systems.

225 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a preliminary study of the rates of removal of the indigenous alkaline cations in a poplar wood (potassium and calcium mainly) by an ion exchange process using a dilute acid.

172 citations

Patent
11 Sep 1996
TL;DR: In this paper, a thermolysis process for the production of volatiles for an external combustor or liquefaction of biomass solids in which specific and previously unrecognized conditions are employed is described.
Abstract: A thermolysis process for the production of volatiles for an external combustor (203) or liquefaction of biomass solids in which specific and previously unrecognized conditions are employed. The thermolysis is carried out in a single deep fluidized bed (211) of inert material operating at near atmospheric pressure, relatively low temperature, long solids and gas residence times and moderate heating rates. The distribution of the thermolysis products among solid (char) and gases under these conditions is unique. The product effluent can be either quenched to produce a high liquid yield in addition to a low char yield or the volatile effluent can be used in either the same combustor (203) or a second combustor (310) to produce heat energy a particularly high efficiency system. In using a quencher (403), the quenched liquid is of similar composition to those obtained by so called fast pyrolysis procees of the prior art. The specified conditions are such as to allow production of liquids in high yields in an energy efficient manner. The low severity of the conditions in comparison with previous approaches allows simplified process design and scale-up leading to lower capital and operating costs as well as easier control.

153 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

4,988 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil is provided, including the major reaction systems.
Abstract: This paper provides an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil. The technology of fast pyrolysis is described including the major reaction systems. The primary liquid product is characterised by reference to the many properties that impact on its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of methods and catalysts and particularly the complexity and sophistication of multi-functional catalyst systems. It is also important to see more companies involved in this technology area and increased take-up of evolving upgrading processes. © 2011 Elsevier Ltd.

3,727 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed scientific and technical developments in applications of bio-oil to date and concluded with some suggestions for research and strategic developments, and concluded that biooil is a renewable liquid fuel and can also be used for production of chemicals.
Abstract: Fast pyrolysis of biomass is one of the most recent renewable energy processes to have been introduced. It offers the advantages of a liquid product, bio-oil that can be readily stored and transported. Bio-oil is a renewable liquid fuel and can also be used for production of chemicals. Fast pyrolysis has now achieved a commercial success for production of chemicals and is being actively developed for producing liquid fuels. Bio-oils have been successfully tested in engines, turbines, and boilers, and have been upgraded to high-quality hydrocarbon fuels, although at a presently unacceptable energetic and financial cost. The paper critically reviews scientific and technical developments in applications of bio-oil to date and concludes with some suggestions for research and strategic developments.

2,672 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the available information about the physical and chemical properties of charcoal as affected by different combustion procedures, and the effects of its application in agricultural fields on nutrient retention and crop production.
Abstract: Rapid turnover of organic matter leads to a low efficiency of organic fertilizers applied to increase and sequester C in soils of the humid tropics. Charcoal was reported to be responsible for high soil organic matter contents and soil fertility of anthropogenic soils (Terra Preta) found in central Amazonia. Therefore, we reviewed the available information about the physical and chemical properties of charcoal as affected by different combustion procedures, and the effects of its application in agricultural fields on nutrient retention and crop production. Higher nutrient retention and nutrient availability were found after charcoal additions to soil, related to higher exchange capacity, surface area and direct nutrient additions. Higher charring temperatures generally improved exchange properties and surface area of the charcoal. Additionally, charcoal is relatively recalcitrant and can therefore be used as a long-term sink for atmospheric CO2. Several aspects of a charcoal management system remain unclear, such as the role of microorganisms in oxidizing charcoal surfaces and releasing nutrients and the possibilities to improve charcoal properties during production under field conditions. Several research needs were identified, such as field testing of charcoal production in tropical agroecosystems, the investigation of surface properties of the carbonized materials in the soil environment, and the evaluation of the agronomic and economic effectiveness of soil management with charcoal.

2,514 citations