scispace - formally typeset
Search or ask a question
Author

Despoina Nektaria Metsiou

Bio: Despoina Nektaria Metsiou is an academic researcher from University of Patras. The author has contributed to research in topics: Cancer cell & Cancer. The author has an hindex of 2, co-authored 4 publications receiving 19 citations.
Topics: Cancer cell, Cancer, MCF-7, Cell migration, Cell

Papers
More filters
Journal ArticleDOI
TL;DR: The data show that the treatment of NSCLC cells with an aromatase inhibitor not only affects cell migration and invasion but also alters the mechanical properties of the cells, suggesting that the different origin of cancer cells is associated with different morphological characteristics and mechanical behavior.

16 citations

Journal ArticleDOI
TL;DR: In this article, biomechanics of suspended and adhered breast cancer cells were investigated via the micropipette aspiration method with special emphasis on comparing the cell stiffness and viscoelastic parameters of estrogen receptor positive, ER+, MCF-7 and human epidermal growth factor receptor 2 positive, HER2-+, SKBR-3 cancer cell lines prior to and post treatment with tamoxifen and trastuzumab, respectively.
Abstract: Studying human cancer from a biomechanical perspective may contribute to pathogenesis understanding which leads to the malignancy. In this study, biomechanics of suspended and adhered breast cancer cells were investigated via the micropipette aspiration method with special emphasis on comparing the cell stiffness and viscoelastic parameters of estrogen receptor positive, ER+, MCF-7 and human epidermal growth factor receptor 2 positive, HER2 +, SKBR-3 cancer cell lines prior to and post treatment with tamoxifen and trastuzumab, respectively. Alterations of mechanical parameters included significant increase in cell stiffness, especially after treatment with trastuzumab and changes in viscoelastic parameters, in both cancer cell lines post treatment. According to immunofluorescence analysis, the raised cell stiffness was corresponded to remodeling of F-actin, which peripherally located in tamoxifen treated and perinuclear accumulated in trastuzumab treated cancer cell cytoskeleton, implying a reduced potential for cell deformation and motility. Additionally, these results were in line with the study of single and collective cell migration through Boyden chamber and wound healing assays respectively, where the potential for migration was significantly decreased after treatment. Consequently, these findings lead to an increased interest in biomechanics of cancer progression after treatment with anti-tumor agents, importantly in understanding the effect of the alterations of mechanical properties upon the possibility for change in metastatic potential.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the methods of biofabricated scaffolds via 3D printing and bioprinting, the biomaterials and bioinks recruited to create biomimicked tissues of cardiac valves and vascular networks have also been included.
Abstract: Recent decades have seen a plethora of regenerating new tissues in order to treat a multitude of cardiovascular diseases. Autografts, xenografts and bioengineered extracellular matrices have been employed in this endeavor. However, current limitations of xenografts and exogenous scaffolds to acquire sustainable cell viability, anti-inflammatory and non-cytotoxic effects with anti-thrombogenic properties underline the requirement for alternative bioengineered scaffolds. Herein, we sought to encompass the methods of biofabricated scaffolds via 3D printing and bioprinting, the biomaterials and bioinks recruited to create biomimicked tissues of cardiac valves and vascular networks. Experimental and computational designing approaches have also been included. Moreover, the in vivo applications of the latest studies on the treatment of cardiovascular diseases have been compiled and rigorously discussed.

6 citations

Journal ArticleDOI
TL;DR: The results showed that the post-treatment spreading rate was significantly decreased in both types of breast cancer, suggesting a lower metastatic potential and the probability of cell motility, migration, and metastasis was confined.
Abstract: The onset and progression of cancer are strongly associated with the dissipation of adhesion forces between cancer cells, thus facilitating their incessant attachment and detachment from the extracellular matrix (ECM) to move toward metastasis. During this process, cancer cells undergo mechanical stresses and respond to these stresses with membrane deformation while inducing protrusions to invade the surrounding tissues. Cellular response to mechanical forces is inherently related to the reorganization of the cytoskeleton, the dissipation of cell–cell junctions, and the adhesion to the surrounding ECM. Moreover, the role of focal adhesion proteins, and particularly the role of vinculin in cell attachment and detachment during migration, is critical, indicating the tight cell–ECM junctions, which favor or inhibit the metastatic cascade. The biomechanical analysis of these sequences of events may elucidate the tumor progression and the potential of cancer cells for migration and metastasis. In this work, we focused on the evaluation of the spreading rate and the estimation of the adhesion strength between breast cancer cells and ECM prior to and post-treatment with anti-tumor agents. Specifically, different tamoxifen concentrations were used for ER+ breast cancer cells, while even concentrations of trastuzumab and pertuzumab were used for HER2+ cells. Analysis of cell stiffness indicated an increased elastic Young’s modulus post-treatment in both MCF-7 and SKBR-3 cells. The results showed that the post-treatment spreading rate was significantly decreased in both types of breast cancer, suggesting a lower metastatic potential. Additionally, treated cells required greater adhesion forces to detach from the ECM, thus preventing detachment events of cancer cells from the ECM, and therefore, the probability of cell motility, migration, and metastasis was confined. Furthermore, post-detachment and post-treatment vinculin levels were increased, indicating tighter cell–ECM junctions, hence limiting the probability of cell detachment and, therefore, cell motility and migration.

2 citations

Journal ArticleDOI
TL;DR: In this article, the effects of cell biomechanics plays a major role as a promising biomarker for early cancer diagnosis and prognosis, and alterations in modulus of elasticity, cell membrane roughness and migratory potential of MCF-7 (ER+) and SKBR-3 (HER2+) cancer cells were elucidated prior to and post treatment with conditioned medium from human umbilical mesenchymal stem cells (hUMSCs-CM) during static and dynamic cell culture.
Abstract: Cell biomechanics plays a major role as a promising biomarker for early cancer diagnosis and prognosis. In the present study, alterations in modulus of elasticity, cell membrane roughness, and migratory potential of MCF-7 (ER+) and SKBR-3 (HER2+) cancer cells were elucidated prior to and post treatment with conditioned medium from human umbilical mesenchymal stem cells (hUMSCs-CM) during static and dynamic cell culture. Moreover, the therapeutic potency of hUMSCs-CM on cancer cell’s viability, migratory potential, and F-actin quantified intensity was addressed in 2D surfaces and 3D scaffolds. Interestingly, alterations in ER+ cancer cells showed a positive effect of treatment upon limiting cell viability, motility, and potential for migration. Moreover, increased post treatment cell stiffness indicated rigid cancer cells with confined cell movement and cytoskeletal alterations with restricted lamellipodia formation, which enhanced these results. On the contrary, the cell viability and the migratory potential were not confined post treatment with hUMSCs-CM on HER2+ cells, possibly due to their intrinsic aggressiveness. The increased post treatment cell viability and the decreased cell stiffness indicated an increased potency for cell movement. Hence, the therapy had no efficacy on HER2+ cells.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The potential of antiestrogen therapy in LC treatment is discussed, the results from preclinical and clinical trials are shown and the role of estrogen and its receptors in lung carcinogenesis and LC prognosis is highlighted.
Abstract: Lung cancer (LC) is the leading cause of cancer death in men worldwide and has significantly increased in women. Differences in non-small cell lung cancer (NSCLC) behavior, prognosis, and response to treatment have been reported by sex and hormonal status, with premenopausal women presenting the worst prognosis compared to postmenopausal women and men. Additionally, the use of hormonal replacement therapy significantly increases NSCLC mortality; supporting the role of estrogen signaling in the pathogenesis of LC. The mechanisms by which estrogen promotes lung carcinogenesis have not been fully elucidated. Estrogen, through its receptor, can stimulate LC cell proliferation, death resistance, angiogenesis, migration and metastasis. Estrogen also induces expression of pro-inflammatory proteins and ligands that promote tumor evasion, suggesting that estrogen might modify the microenvironment and anti-tumor immune response. Recent reports have shown an interaction between the epidermal growth factor receptor (EGFR) pathway and estrogen signaling in lung adenocarcinoma, whence, combined treatment based on tyrosine kinase inhibitors (TKIs) and antiestrogen therapy is beginning to be evaluated. This review focuses on the differences in NSCLC behavior by sex and hormonal status, highlighting the role of estrogen and its receptors in lung carcinogenesis and LC prognosis. Due to the importance of estrogen in NSCLC development and progression we finally discuss the potential of antiestrogen therapy in LC treatment and show the results from preclinical and clinical trials.

66 citations

Journal ArticleDOI
01 Sep 2016-Steroids
TL;DR: The results emphasize the importance of sex steroids role in NSCLC, and could lead to the development of novel palliative or even adjuvant treatment strategies in this patient population, as anti-hormonal drugs are widely available.

39 citations

Journal ArticleDOI
TL;DR: Evidence is provided indicating that increased amounts of sex-steroid hormones can affect cells biology and be the reason of the accelerated development and pathogenesis of lung cancer.
Abstract: It is well known that a connection between xenobiotics inhalation, especially tobacco combustion and Lung Cancer development is strongly significant and indisputable. However, recent studies provide evidence indicating that another factors such as, estrogens are also involved in lung carcinoma biology and metabolism. Although the status of estrogen receptors (ER), in both cancerous and healthy lung tissue has been well documented, there is still inconclusive data with respect of which isoform of the receptor is present in the lungs. However according to several studies, ERβ appears to be predominant form. Apart from ERs, estrogens can work through a recently discovered G-coupled estrogen receptor. Binding with both types of the receptors causes a signal, which leads to i.e. enhanced cell proliferation. There are many published reports which suggest that estrogen can be synthesized in situ in lung cancer. Some disturbances in the activity and expression levels of enzymes involved in estrogen synthesis were proved. This suggests that increased amounts of sex-steroid hormones can affect cells biology and be the reason of the accelerated development and pathogenesis of lung cancer. There also exist phenomena which associate estrogenic metabolism and tobacco combustion and its carcinogenic influence on the lungs. Compounds present in cigarette smoke induce the activity of CYP1B1, the enzyme responsible for estrogenic metabolism and synthesis of their cateholic derivatives. These structures during their redox cycle are able to release reactive oxygen species or form DNA adduct, which generally leads to destruction of genetic material. This process may explain the synergistic effect of smoking and estrogens on estrogen-dependent lung cancer development.

35 citations

Journal ArticleDOI
TL;DR: Exemestane, a third-generation steroidal AI, belongs to this class of drugs and is currently used in clinic to treat postmenopausal women, due to its high efficacy and good tolerability.

33 citations

Journal ArticleDOI
05 Mar 2021-Cells
TL;DR: In this article, a review of single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques is presented, which is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at singlecell with attachment and detachment events.
Abstract: Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.

28 citations